Survey of Two Classes of Continuation Methods for Solving Optimal Bang-Bang Control of Low-Thrust Space Trajectories

ZHU Zhengfan1, GAO Yang2

PDF(1369 KB)
PDF(1369 KB)
Journal of Deep Space Exploration ›› 2017, Vol. 4 ›› Issue (2) : 101-110. DOI: 10.15982/j.issn.2095-7777.2017.02.001

Survey of Two Classes of Continuation Methods for Solving Optimal Bang-Bang Control of Low-Thrust Space Trajectories

  • ZHU Zhengfan1, GAO Yang2
Author information +
History +

Abstract

The optimal Bang-Bang control problem of low-thrust space trajectories is introduced. Two classes of continuation methods are described:the first solves the energy-optimal solution,and subsequently employs the energy-fuel homotopy to obtain the optimal Bang-Bang control;the second introduces a switching principle,and obtains the optimal Bang-Bang control through parameter continuation starting from a two-impulse solution. The two continuation methods are compared,and the advantages and characteristics of the two methods are discussed. The prospects of the continuation methods applying to more complicated low-thrust trajectory designs are proposed. The concept of artificial intelligence trajectory optimization is presented,which contains three aspects:initial solution,continuation,and patching.

Keywords

low thrust / numerical optimization / Bang-Bang control / homotopy continuation / artificial intelligence

Cite this article

Download citation ▾
ZHU Zhengfan, GAO Yang. Survey of Two Classes of Continuation Methods for Solving Optimal Bang-Bang Control of Low-Thrust Space Trajectories. Journal of Deep Space Exploration, 2017, 4(2): 101‒110 https://doi.org/10.15982/j.issn.2095-7777.2017.02.001

References

[1] Conway B A. Spacecraft trajectory optimization [M].UK:Cambridge University Press,2010.
[2] Kemble S. Interplanetary mission analysis and design [M].Netherland:Springer Science & Business Media,2006.
[3] Bryson A E,Ho Y. Applied optimal control:optimization,estimation and control [M]. Boca Raton:CRC Press,1975.
[4] Gill P E,Murray W,Saunders M A,et al. User’s guide for NPSOL(Version 4.0):a FORTRAN package for nonlinear programming [M]. USA:Department of Operations Research,Stanford University,1986.
[5] Gill P E,Murray W,Saunders M A. SNOPT:an SQP algorithm for large-scale constrained optimization [J]. SIAM Review,2002,47:99-131
[6] Gill P E,Murray W,Saunders M A. User’s guide for SNOPT version 7:software for large scale nonlinear programming[M]. Research Gate,2008.
[7] Springer B. KNITRO:an integrated package for nonlinear optimization [J]. Large Scale Nonlinear Optimization,2010,83:35-59
[8] Betts J T. Survey of numerical methods for trajectory optimization [J]. Journal of Guidance,Control,and Dynamics,1998,21(2):193-207
[9] Rao A V. A survey of numerical methods for optimal control [J]. Advances in the Astronautical Sciences,2009,135(1):497-528
[10] 高扬. 电火箭星际航行:技术进展、轨道设计与综合优化 [J]. 力学学报,2011,43(6):991-1019
Gao Y. Interplanetary travel with electric propulsion:technological progress,trajectory design,and comprehensive optimization [J]. Chinese Journal of Theoretical and Applied Mechanics,2011,43(6):991-1019
[11] 李俊峰,蒋方华. 连续小推力航天器的深空探测轨道优化方法综述 [J]. 力学与实践,2011,33(3):1-6
Li J,Jiang F. Survey of low-thrust trajectory optimization methods for deep space exploration [J]. Mechanics in Engineering,2011,33(3):1-6
[12] Pontryagin L S,Boltyansky V G,Gamkrelidze R V,et al. The mathematical theory of optimal processes [M]. New York:Interscience Publishers,1962.
[13] Bartholomew-Biggs M C,Dixon L C W,Hersom S E,et al. From high thrust to low thrust:an application of advanced optimisation methods to mission analysis [J]. ESA J.,1983,11:61-73
[14] Dixon L C W,Hersom S E,Maany Z A. Low thrust orbit optimisation for interplanetary missions [R]. The Hatfield Polytechnic:Technical Report 137,Numerical Optimisation Centre,1983.
[15] Dixon L C W,Maany Z A. To bus and back [C]//ESA Proceedings of the Second International Symposium on Spacecraft Flight Dynamics. Darmstadt,Germany:ESA,1986.
[16] Bartholomew-Biggs M C,Dixon L C W,Hersom S E,et al. The solution of some difficult problems in low-thrust interplanetary trajectory optimization [J]. Optimal Control Applications and Methods,1988,9:229-251
[17] Oberle H J,Taubert K. Existence and multiple solutions of the minimum-fuel orbit transfer problem [J]. Journal of Optimization Theory and Applications,1997,95(2):243-262
[18] Fowler W T,O’Neill P M. Relationship between coast arc length and switching function value during optimization [J]. Journal of Spacecraft and Rockets,1976,3(7):445-446
[19] Chuang C H,Goodson T,Hanson J. Fuel-optimal,low- and medium-thrust orbit transfers in large numbers of burns [C]//AIAA 94-3650,Guidance,Navigation,and Control Conference.USA:AIAA,1994.
[20] Chuang J C H,Goodson T D,Hanson J. Multiple-burn families of optimal low- and medium-thrust orbit transfers [J]. Journal of Spacecraft and Rockets,1999,36(6):866-874
[21] Redding D C. Highly efficient,very low-thrust transfer to geosynchronous orbit-Exact and approximate solutions [J]. Journal of Guidance,Control,and Dynamics,1984,7(2):141-147
[22] Redding D,Breakwell J V. Optimal low-thrust transfers to synchronous orbit [J]. Journal of Guidance,Control,and Dynamics,1984,7(2):148-155
[23] Gao,Y. Near-optimal very low-thrust Earth-orbit transfers and guidance schemes [J]. Journal of Guidance,Control,and Dynamics,2007,30(2):529-539
[24] Zuiani F,Vasile M. Preliminary design of debris removal missions by means of simplified models for low-thrust,many-revolution transfers [J]. International Journal of Aerospace Engineering,2012
[25] Goodson T,Chuang J C H,Hanson J,et al. Optimal finite thrust orbit transfers with large numbers of burns [J]. Journal of Guidance,Control,and Dynamics,1999,22(1):139-148
[26] Bai X,Turner J D,Junkins J L. A robust homotopy method for equality constrained nonlinear optimization [C]//AIAA 2008-5845,12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Columbia:AIAA,2008.
[27] Bai X,Turner J D,Junkins J L. Optimal thrust design of a mission to apophis based on a homotopy method [C]//AAS/AIAA Spaceflight Mechanics Meeting. Georgia:AIAA,2009.
[28] Bai X,Turner J D,Junkins J L. Bang-Bang control design by combing pseudospectral method with a novel homotopy algorithm [C]//AIAA Guidance,Navigation,and Control Conference and Control Conference.[S.l.]:AIAA,2009.
[29] Shan J,Ren Y. Low-thrust trajectory design with constrained particle swarm optimization[J]. Aerospace Science and Technology,2014,36:114-124
[30] Darby C L,Hager W W,Rao A V. Direct trajectory optimization using a variable low-order adaptive pseudospectral method [J]. Journal of Spacecraft and Rockets,2011,48(3):433-445
[31] Zondervan K P. Optimal low thrust,three burn orbit transfers with large plane changes [D]. California:California Institute of Technology,1983.
[32] Zondervan K P,Wood L J,Caughey T K. Optimal low-thrust,three-burn orbit transfers with large plane changes [J]. Journal of the Astronautical Sciences,1984,32(3):407-427
[33] Ilgen M R. Hybrid method for computing optimal low thrust OTV trajectories [J]. Advances in the Astronautical Sciences,1994,87(2):941-958
[34] Kluever C A,Pierson B L. Optimal Low-Thrust Three-Dimensional Earth-Moon trajectories [J]. Journal of Guidance,Control,and Dynamics,1995,18(4):830-837
[35] Gao Y,Kluever C A. Low-thrust interplanetary orbit transfers using hybrid trajectory optimization method with multiple shooting [C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Providence. Rhode Island:AIAA,2004.
[36] Bertrand R.,Epenoy R. New smoothing techniques for solving bang-bang optimal control problems:numerical results and statistical interpretation [J]. Optimal Control Applications and Methods,2002,23(4):171-197
[37] Haberkorn T,Martinon P,Gergaud J. Low thrust minimum-fuel orbital transfer:a homotopic approach [J]. Journal of Guidance,Control,and Dynamics,2004,27(6):1046-1060
[38] Gergaud,J,Haberkorn T. Homotopy method for minimum consumption orbit transfer problem [J]. ESAIM:Control,Optimization,and Calculus of Variations,2006,12(2):294-310
[39] Gergaud J,Haberkorn T. Orbital transfer:some links between the low-thrust and the impulse cases [J]. Acta Astronautica,2007,60(8-9):649-657
[40] Martinon P,Gergaud J. Using switching detection and variational equations for the shooting method [J]. Optimal Control Applications and Methods,2007,28(2):95-116
[41] Petukhov V G. Optimization of interplanetary trajectories for spacecraft with ideally regulated engines using the continuation method [J]. Cosmic Research,2008,46(3):219-232
[42] Petukhov V G. Method of continuation for optimization of interplanetary low-thrust trajectories [J]. Cosmic Research,2012,50(3):249-261
[43] Caillau J B,Daoud B,Gergaud J. Discrete and differential homotopy in circular restricted three-body control [J]. Discrete & Continuous Dynamical Systems,2010,3(3):229-239
[44] Caillau J B,Daoud B,Gergaud J. Minimum fuel control of the planar circular restricted three-body problem [J]. Celestial Mechanics and Dynamical Astronomy,2012,114(1-2):137-150
[45] Olympio J T. Optimal control problem for low-thrust multiple asteroid tour missions [J]. Journal of Guidance,Control,and Dynamics,2011,34(6):1709-1720
[46] Guo T,Jiang F,Baoyin H,et al. Fuel optimal low thrust rendezvous with outer planets via gravity assist [J]. Science China:Physics,Mechanics and Astronomy,2011,54(4):756-769
[47] Guo T,Jiang F,Li J. Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization [J]. Acta Astronautica,2012,71:38-50
[48] Jiang F,Baoyin H,Li J. Practical Techniques for low-thrust trajectory optimization with homotopic approach [J]. Journal of Guidance,Control,and Dynamics,2012,35(1):245-258
[49] Li J,Xi XN. Fuel-optimal low-thrust reconfiguration of formation- flying satellites via homotopic approach [J]. Journal of Guidance,Control,and Dynamics,2012,35(6):1709-1717
[50] Tarzi Z,Speyer J,Wirz R. Fuel optimum low-thrust elliptic transfer using numerical averaging [J]. Acta Astronautica,2013,86:95-118
[51] Zhang P,Li J,Baoyin H,Tang G. A low-thrust transfer between the Earth-Moon and Sun-Earth systems based on invariant monifolds [J]. Acta Astronautica,2013,91:77-88
[52] Chen Y,Baoyin H,Li J. Accessibility of main-belt asteroids via gravity assists [J]. Journal of Guidance,Control,and Dynamics,2014,37(2):623-632
[53] Zhang P,Li J,Gong S. Fuel-optimal trajectory design using solar electric propulsion under power constraints and performance degradation [J]. Science China Physics,Mechanics & Astronomy,2014,57(6):1090-1097
[54] Zhang C,Topputo F,Bernelli-Zazzera F,et al. Low-thrust minimum-fuel optimization in the circular restricted three-body problem [J]. Journal of Guidance,Control,and Dynamics,2015,38(8):1501-1510
[55] 张晨,赵育善. 混合推进最省燃料轨道设计方法 [J]. 宇航学报,2015,36(8):869-876
Zhang C,Zhao Y. A method for hybrid propulsion minimum fuel trajectory optimization [J]. Journal of Astronautics,2015,36(8):869-876
[56] 陆毅,李济生,李恒年,等. 基于星历匹配法的载人小行星探测轨迹优化问题求解[J]. 力学与实践,2014,36(2):172-179
Lu Y,Li J,Li H,et al. Problem solving of the manned asteroids exploration trajectory optimization based on ephemeris matching method [J]. Mechanics in Engineering,2014,36(2):172-179
[57] 黄岸毅,车征,李恒年,等. 有限推力多小行星探测轨迹优化[J]. 力学与实践,2015,37(1):49-55
Huang A,Che Z,Li H,et al. Low-thrust trajectory optimization for multi-asteroid exploration [J]. Mechanics in Engineering,2015,37(1):49-55
[58] 朱小龙,刘迎春,高扬. 航天器最优受控绕飞轨迹推力幅值延拓设计方法[J]. 力学学报,2014,46(5):756-769
Zhu X,Liu Y,Gao Y. Thrust-amplitude continuation design approach for solving spacecraft optimal controlled fly-around trajectory [J]. Chinese Journal of Theoretical and Applied Mechanics,2014,46(5):756-769
[59] 朱小龙,马剑,刘强,等. 月面远程运输飞行轨迹优化设计[J]. 载人航天,2015,21(1):75-82
Zhu X,Ma J,Liu Q,Gao Y. Optimization design of long-range transport flight trajectories on lunar surface [J]. Manned Spaceflight,2015,21(1):75-82
[60] Battin,R.H. An introduction to the mathematics and methods of astrodynamics [M]. [S.l.]:AIAA Education Series,1987.
[61] 朱政帆,甘庆波. 第七届全国空间轨道设计竞赛乙组解法[J]. 力学与实践,2016,38(5):596-602
Zhu Z,Gan Q. 7th National space trajectory design competition:results of problem B [J]. Mechanics in Engineering,2016,38(5):596-602
[62] 孟雅哲. 航天器燃耗最优轨道直接/间接混合法延拓求解[J]. 航空学报,2017,38(1): 259-280
Meng Y. Minimum-fuel spacecraft transfer trajectories solved by direct/indirect hybrid method with continuation [J]. Acta Aeronautica et Astronautica Sinica,2017,38(1):259-280
[63] Zhu Z,Gao Y,Yang X,et al. Solving fuel-optimal low-thrust orbital transfers with bang-bang control using a novel continuation technique [J]. Acta Astronautica,accepted.
[64] Shen H X,Casalino L,Luo Y Z. Global Search Capabilities of Indirect Methods for Impulsive Transfers [J]. The Journal of the Astronautical Sciences,2015,62(3):212-232
[65] Shen H X,Casalino L,Li H Y. Adjoints estimation methods for impulsive Moon-to-Earth trajectories in the restricted three-body problem[J]. Optimal Control Applications and Methods,2015,36(4):463-474
[66] Shen H X,Casalino L. Indirect optimization of three-dimensional multiple-impulse Moon-to-Earth transfers [J]. The Journal of the Astronautical Sciences,2014,61(3):255-274
PDF(1369 KB)

Accesses

Citations

Detail

Sections
Recommended

/