Exploration of Microgravity by Using the Cold Atom Interferometer in Deep Space Environment

LU Xuanhui1,2, ZENG Daji1, ZHANG Xian2, HUANG Kaikai1

PDF(2602 KB)
PDF(2602 KB)
Journal of Deep Space Exploration ›› 2017, Vol. 4 ›› Issue (1) : 20-25. DOI: 10.15982/j.issn.2095-7777.2017.01.003

Exploration of Microgravity by Using the Cold Atom Interferometer in Deep Space Environment

  • LU Xuanhui1,2, ZENG Daji1, ZHANG Xian2, HUANG Kaikai1
Author information +
History +

Abstract

The fundamental principle of atom interferometer and the advantages of atom gravimeter in microgravity environment are introduced and the present research status and potential applications of atom gravimeters in microgravity environment are described. Compared with other gravimeters, the atomic interference gravimeter becomes a good choice for deep space gravitational field measurement, and the deep space microgravity environment can effectively prolong the interference time of the atomic interferometer and improve the gravimeter sensitivity.

Keywords

cold atom interferometer / microgravity / deep space exploration

Cite this article

Download citation ▾
LU Xuanhui, ZENG Daji, ZHANG Xian, HUANG Kaikai. Exploration of Microgravity by Using the Cold Atom Interferometer in Deep Space Environment. Journal of Deep Space Exploration, 2017, 4(1): 20‒25 https://doi.org/10.15982/j.issn.2095-7777.2017.01.003

References

[1] Kasevich M,Chu S. Atomic interferometry using stimulated Raman transitions[J]. Physical Review Letters,1991,67(2):181-184
[2] Kasevich M,Chu S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferomter[J]. Applied Physics B :Lasers and Optics,1992,54(5):321-332
[3] Peters A,Chung K,Chu S. High-precision gravity measurements using atom interferometry[J]. Metrologia,2003,38(1):25-62
[4] Le Gouet L,Mehlstubler T,Kim J,et al. Limits to the sensitivity of a low noise compact atomic gravimeter[J]. Applied Physics B:Lasers and Optics,2008,92(2):133-144
[5] Cheinet P,Pereira Dos Santos F,Petelski T,et al. Compact laser system for atom interferometry[J]. Applied Physics B:Lasers and Optics,2006,84(4):643-646
[6] Petelski T. Atom interferometers for precision gravity measurements[D]. Firenze:Firenze University,2005.
[7] Sorrentino F,Lien Y,Rosi G,et al. Sensitive gravity-gradiometry with atom interferometry:progress towards an improved determination of the gravitational constant[J]. New Journal of Physics,2010,12(9):474-479
[8] Poli N,Wang F,Tarallo M,et al. Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter[J]. Physical Review Letters,2011,106(3):426-432
[9] Borde C. Theoretical tools for atom optics and interferometry[J]. Comptes Rendus de l’Academie des Sciences-Series IV-Physics,2001,2(3):509-530
[10] Berman P R. Atom interferometry[M]. New York:Academic Press,1997.
[11] Weiss D,Young B,Chu S. Precision measurement of ?/mCs based on photon recoil using laser-cooled atoms and atomic interferometry[J]. Applied Physics B:Lasers and Optics,1994,59(3):217-256
[12] Kovachy T,Asenbaum P,Overstreet C,et al. Quantum superposition at the half-metre scale[J]. Nature,2015,528,530-533
[13] Müller H,Chiow S W,Herrmann S,et al. Atom interferometers with scalable enclosed area[J]. Physical Review Letters,2009,102(24):240403
[14] Altin P A,Johnsson M T,Negnevitsky V,et al. Precision atomic gravimeter based on Bragg diffraction[J]. New Journal of Physics,2013,15(5):23009-23027
[15] Mazzoni T,Zhang X,Del Aguila R,et al. Large-momentum-transfer Bragg interferometer with strontium atoms[J]. Physical Review A,2015,92(5):053619
[16] Zych M,Costa F,Pikovski I,et al. Quantum interferometric visibility as a witness of general relativistic proper time[J]. Physics,2011,2(3):487-502
[17] Pikovski I,Zych M,Costa F,et al. Universal decoherence due to gravitational time dilation,[J]. Nature Physics,2015,11(8):668-672
[18] Pang B H,Chen Y,Khalili F Y. Universal decoherence under gravity:a perspective through the equivalence principle[J]. Physical Review Letter,2016,117(9),090401
[19] Sorrentino F,Bongs K,Bouyer P,et al. The space atom interferometer project:status and prospects[J]. Journal of Physics:Conference Series,2011,327(1):111-118
[20] Charrière R,Cadoret M,Zahzam N,et al. Local gravity measurement with the combination of atom interferometry and Bloch oscillations[J]. Physical Review A,2011,85(1):3353-3366
[21] Zhang X,del Aguila R,Mazzoni T,et al. Trapped-atom interferometer with ultracold Sr atoms[J]. Physical Review A,2016,94: 043608
[22] Sugarbaker A. Atom interferometry in a 10 m fountain[D]. PaloAlto:Stanford University,2014.
[23] 湖北省人民政府门户网站. 原子“比萨斜塔实验”精度达10–8武汉科学家创世界纪录[EB/OL]. (2015-07-22)[2016-11-01]. http://www. hubei.gov.cn/2015change/2015sq/sq/201507/t20150722_692844.shtml.
[24] Geiger P,Ménoret V,Stern G,et al. Detecting inertial effects with airborne matter-wave interferometry[J]. Nature Communications,2011,2(1):474-474
[25] Müntinga H,Ahlers H,Krutzik M,et al. Interferometry with Bose-Einstein Condenstates in Microgravity,Physical Review Letters,2013,110(9):1-1
[26] Anderson D.The CAL science module and science instrument are in the final stages of assembly prior to system test[EB/OL].[2016-11-01]. http://coldatomlab.jpl.nasa.gov/.
[27] Abbott B P. (LIGO Scientific Collaboration and Virgo Collaboration),observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters,2016,116: 061102
[28] Vitale S.LISA pathfinder completes first operations phase[EB/OL].[2016-11-01].http://sci.esa.int/lisa-pathfinder.
[29] Hogan J M,Johnson D M S,Dickerson S,et al. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO)[J]. General Relativity and Gravitation,2011,43: 1953-2009
[30] Graham P W,Hogan J M,Kasevich M A,et al. New method for gravitational wave detection with atomic sensors[J]. Physical Review Letters,2013,110(17):278-284
[31] Schlippert D,Hartwig J,Albers H,et al. Quantum test of the universality of free fall[J],Physical Review Letters,2014,112(20): 203002
[32] Tarallo M G,Mazzoni T,Poli N,et al. Test of einstein equivalence principle for 0-spin:and half-integer-spin atoms:search for spin-gravity coupling effects[J]. Physical Review Letters,2014,113(2):023005
[33] Zhou L,Long S T,Tang B,et al. Test of equivalence principle at 10–8 Level by a dual-species double-diffraction raman atom interferometer [J]. Physical Review Letters,2015,115(1): 013004
[34] Tino G M,Sorrentino F,Aguilera D,et al. Precision gravity tests with atom interferometry in space[J]. Nuclear Physics B Proceedings Supplements,2012,243:203-217
[35] Stern G,Battelier B,Geiger R,et al. GLight pulse atom interferometry in microgravity[J]. The European Physical Journal D,2009,53(3):353-357
[36] Gaaloul N,H. Ahlers H,Schulze T A,et al. Quantum tests of the equivalence principle with atom interferometry[J]. Acta Astronautica,2010,67(9):1059-1062
[37] Parker R H,Yu C,Estey B,et al. Controlling the multiport nature of bragg diffraction in atom interferometry[J]. Arxiv preprint arXiv,2016,1609:06344
[38] Hamann S E,Haycock D L,Klose G,et al. Resolved-sideband raman cooling to the ground state of an optical lattice[J]. Physical Review Letters,1998,80(19):4149-4152
[39] Thompson J D,Tiecke T G,Zibrov A S,et al. Coherence and Raman sideband cooling of a single atom in an optical tweezer[J]. Physical Review Letters,2013,110(13):428-432
[40] Kovachy T,Hogan J M,Sugarbaker A,et al. Matter wave lensing to picokelvin temperatures[J]. Physical Review Letters,2015,114(14):345-356
PDF(2602 KB)

Accesses

Citations

Detail

Sections
Recommended

/