Research on Autonomous Navigation Algorithms for the Mars Probe via Speed and Angle Measurement Sensors

LIU Ruixia,ZHANG Jianqiao

PDF(3000 KB)
PDF(3000 KB)
Journal of Deep Space Exploration ›› 2016, Vol. 3 ›› Issue (3) : 219-224. DOI: 10.15982/j.issn.2095-7777.2016.03.004

Research on Autonomous Navigation Algorithms for the Mars Probe via Speed and Angle Measurement Sensors

  • LIU Ruixia,ZHANG Jianqiao
Author information +
History +

Abstract

In this paper a new navigation method is proposed, which is based on using red shift to measure speed and using star sensor to measure angle. Compared with the existing autonomous navigation methods, this method does not rely on radio message and complicated orbital dynamics model. It has the advantage of highly independent, easy to implement and without time delay. By using this method, the differential error caused by measuring angle method and the integral error caused by measuring speed method can be eliminated, then make precise astronomical autonomous navigation come true to meet the basis of deep space requirements for autonomous navigation, real-time and high precision. Firstly, the orbit dynamics model and the measurement model are established. Secondly, due to the nonlinear characteristics of the model, EKF is used to complete the autonomous navigation for Mars probe. Finally, a numerical example is established to illustrate the effectiveness of the proposed control approach and by analyzing, it can find that this method satisfies the requirement of navigation precision of cruise phase.

Keywords

velocity and angular measurement / federal filter / deep space exploration

Cite this article

Download citation ▾
LIU Ruixia, ZHANG Jianqiao. Research on Autonomous Navigation Algorithms for the Mars Probe via Speed and Angle Measurement Sensors. Journal of Deep Space Exploration, 2016, 3(3): 219‒224 https://doi.org/10.15982/j.issn.2095-7777.2016.03.004

References

[1] 张伟,陈晓,尤伟. 光谱红移自主导航新方法[J]. 上海航天,2013,2,32-33.
[2] 李俊峰,崔文,宝音贺西. 深空探测自主导航技术综述[J]. 力学与实践,2012,34(2):1-9. Li J F,Cui W,Baoyin H X. A survey of autonomous navigation for deep space exploration[J]. Mechanics in Engineering,2012,34(2):1-9.
[3] Elachi C. The Critical role of communications and navigation technologies to the success of space science enterprise missions[C]//Keynote Address Descanso International Symposium.America:[s. n.]:1999.
[4] Riedel J E,Bhaskaran S,Desai S,et al. Autonomous optical navigation(AutoNav)DS 1 technology validation report[J]. Deep Space 1 technology validation reports(A 01-2612606-12),Pasadena,CA,Jet Propulsion Laboratory(JPL Publication 00-10),2000.
[5] Sheikh S I,Hanson J E,Collins J,et al. Deep space navigation augmentation using variable celestial x-ray sources[C]//Proc. ION 2009 International Technical Meeting. 2009:34-38.
[6] 宋福香,左文辑. 近地卫星的GPS自主定轨算法研究[J]. 空间科学学报,2000,20(1):40-47. Song F X,Zuo W J. Algorithm study on autonomous orbit determination for low Earth orbit microsatellites using GPS[J]. Chinese Journal of Space Science,2000,20(1):40-47.
[7] 王卫华. 非线性滤波技术及其在深空探测自主导航中的应用[D]. 哈尔滨:哈尔滨工业大学,2012. Wang W H. Nonlinear filtering technology and its application in the deep space exploration autonomous navigation[D]. Harbin:Harbin Institute of Technology,2012.
[8] 宁晓琳,吴伟仁,房建成. 深空探测器自主天文导航技术综述(上)[J]. 中国航天,2010,(6):37-40. Ning X L,Wu W R,Fang J C. Survey of autonomous celestial navigation technology for deep space probe(I)[J]. Aerospace China,2010,(6):37-40.
[9] Konopliv A S,Yoder C F,Standish E M,et al. A global solution for the Mars static and seasonal gravity,Mars orientation,phobos and deimos masses,and Mars ephemeris[J]. Icarus,2006,182(1):23-50.
[10] 袁健. 深空探测器自主光学导航方案及非线性滤波算法研究[D]. 青岛:青岛科技大学,2007. Yuan J. Autonomous optical navigation schemes and nonlinear filter algorithems[D]. Qingdao:Qingdao University of Science & Technology,2007.
[11] 刘林. 航天器轨道理论[M]. 北京:国防工业出版社,2000. Liu L. Spacecraft orbit theory[M]. Beijing:National Defense Industry Press,2000.
[12] 季江徽,刘林,张伟.第三体摄动分析解的一种表达式[J]. 天文学报,2000,41(1):79-92. Ji J H,Liu L,Zhang W. An expression of the third body perturbation analytic solutions[J]. Acta Astronomica Sinica,2000,41(1):79-92.
[13] Tang Y,Wu Y,Wu M,et al. INS/GPS integration:Global observability analysis[J]. IEEE Transactions on Vehicular Technology,2009,58(3):1129-1142.
[14] 宁晓琳,房建成. 一种深空探测器自主天文导航新方法及其可观测性分析[J]. 空间科学学报,2005,25(4):286-292. Ning X L,Fang J C. A new autonomous celestial navigation method for deep space probe and its observability analysis[J]. Chin. J. Space Sci.,2005,25(4):286-292.
[15] 常晓华. 深空自主导航方法研究及在小天体探测中的应用[D]. 哈尔滨:哈尔滨工业大学, 2010. Chang X H. Research on deep space autonomous navigation scheme and application to small celestial bodies exploration[J]. Harbin:Harbin Institute of Technology,2010.
[16] 童傅. 行星运动的后牛顿效应[J]. 科学通报,1984,1:11.
[17] 付梦印,邓志红,张继伟. Kalman滤波理论及其在导航系统中的应用[M]. 北京:科学出版社,2003. Fu M Y,Deng Z H,Zhang J W. Kalman filtering theory and its application in navigation system[M]. Beijing:Science Press Ltd.,2003.
[18] 李旦,秦永元,梅春波. 组合导航自适应卡尔曼滤波改进算法研究[J]. 测控技术,2011,30(3):114-116. Li D,Qin Y Y,Mei C B. An improved adaptive Kalman filter algorithm for SINS/GPS integrated navigation system[J]. Measurement & Control Technology,2011,30(3):114-116.
[19] 赵玉晖. 深空探测中的轨道设计和轨道力学[J]. 天文学报,2013,54(3):302-304
[20] 刘劲,房建成,宁晓琳,等. 基于脉冲星和火星观测的深空探测器自主导航[J]. 仪器仪表学报,2014,35(2):247-252.
PDF(3000 KB)

Accesses

Citations

Detail

Sections
Recommended

/