PDF(9716 KB)
Analysis and Design for the Mars Entry, Descent and Landing Mission
- RAO Wei,SUN Zezhou,MENG LinZhi,WANG Chuang,JI Long
Author information
+
Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
Show less
History
+
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报,2014,1(1):1-17.Wu W R,Yu D Y. Development of deep space exploration and its future key technology[J]. Journal of Deep Space Exploration,2014,1(1):1-17.
[2] Manning R M,Adler M A. Landing on Mars[C]//AIAA Space 2005 Conference. Long Beach:AIAA,2005.
[3] Braun R D,Manning R M. Mars exploration entry,descent and landing challenges[C]//2006 IEEE Aerospace Conference. Big Sky,MT:IEEE,2006.
[4] Prakash R,Burkhart P D,Chen A,et al. Mars science laboratory entry,descent and landing system overview[C]//IEEE Aerospace Conference. Big Sky,MT:IEEE,2008,1-18.
[5] Rivellini T P. Challenges of landing on Mars[M]. Washington D. C.:National Academy of Engineering,Frontiers in Engineering,2004.
[6] Chen A,Beck R,Brugarolas P,et al. Entry system design and performance summary for the Mars science laboratory mission[C]//AIAA/AAS Space Flight Mechanics Meeting,American Astronautical.[S. l]:AIAA,2013,413-422.
[7] Anon. Entry data analysis for viking landers 1 and 2 final report,NASA-TN-3770218,NASA-CR-159388[R]. Denver:CO Martin Marietta Corp.,1976.
[8] Braun R D,Powell R W,Engelund W C,et al. Mars pathfinder six-degree-of-freedom entry analysis[J] Journal of Spacecraft and Rockets,1995,32(6):670-676.
[9] Desai P,Schoenenberger M,Cheatwood F M. Mars exploration rover six-degree-of-freedom entry trajectory analysis[J]. Journal of Spacecraft and Rockets,2006,43(5):1019-1025.
[10] Desai P N,Prince J L,Queen E M,et al. Entry,descent,and landing performance of the mars phoenix lander[C]//AIAA Atmospheric Flight Mechanics Conference. USA:AIAA,2008.
[11] Edquist K T,Dyakonov A A,Wright M J,et al. Aerothermo-dynamic design of the Mars science laboratory heatshield[C]//The 41st AIAA Thermophysics Conference. San Antonio,Texas:AIAA,2009.
[12] Willcockson W. Mars pathfinder entry heatshield design and flight experience[J]. Journal of Spacecraft and Rockets,1999,36(3):74-379.
[13] Kipp D,Martin M S,Essmiller J,et al. Mars science laboratory entry,descent,and landing triggers//[C] IEEE Aerospace Conference. Big Sky,MT:IEEE,2007.
[14] Dickinson D,Schlemmer J,Hicks F,et al. Balloon launched decelerator test program,post-flight test report,BLDT Vehicle AV-1,CR-112176[R].[S. l]:NASA,1972.
[15] Preisser J S,Grow R B. High-altitude flight test of a reefed 12.2-meter-diameter disk-gap-band parachute with deployment at a Mach number of 2.58,TN D-6469[R].[S. l]:NASA,1971.
[16] Eckstrom C V,Branscome D R. High-altitude flight test of a disk-gap-band parachute deployed behind a bluff body at a Mach number of 2.69,TM X-2671[R].[S. l]:NASA,1972.
[17] Moog R D,Michel F C. Balloon launched viking decelerator test program summary report,CR-112288[R].[S. l]:NASA,1973.
[18] Henning A B,Lundstrom R R. Flight test of an erectable spacecraft used for decelerator testing at simulated mars entry conditions,NASA TN D-6910[R].[S. l]:NASA,1972.
[19] Lundstrom R R,Jumes L,Raper R J. et al. Flight tests of viking parachute system in three mach number regimes TN D-7692[R].[S. l]:NASA,1974.
[20] Bendura R J,Huckins Ⅲ E K,Coltrane L C. Performance of a 19.7-meter-diameter disk-gap-band parachute in a simulated Martian environment,NASA TM X-1499[R].[S. l]:NASA,1968.
[21] Eckstrom C V. High-altitude flight test of a 40-foot-diameter (12.2-meter) ringsail parachute at a deployment Mach number of 2.95,TN D-5796[R].[S. l]:NASA,1970.
[22] Whitlock C H,Poole L R,Talay T A. Postflight simulation of parachute deployment dynamics of viking qualification flight tests TN D-7415[R].[S. l]:NASA,1973.