Analysis and Design for the Mars Entry, Descent and Landing Mission

RAO Wei,SUN Zezhou,MENG LinZhi,WANG Chuang,JI Long

PDF(9716 KB)
PDF(9716 KB)
Journal of Deep Space Exploration ›› 2016, Vol. 3 ›› Issue (2) : 121-128. DOI: 10.15982/j.issn.2095-7777.2016.02.004
Topic:Mars Exploration

Analysis and Design for the Mars Entry, Descent and Landing Mission

  • RAO Wei,SUN Zezhou,MENG LinZhi,WANG Chuang,JI Long
Author information +
History +

Abstract

Entry, Descent and Landing (EDL) is the most pivotal phase for Mars landing exploration. Compared to the Earth reentry, EDL process of Mars has some similitudes. However, the composition and physical characteristics of Mars atmosphere have much discrepancy with earth atmosphere, and it has quite great uncertainty. As a result, this makes the Mars EDL process quite short and changeable, which requires high deceleration ability and makes a tough scheduling. With consideration of project realization, the problems and challenges of Mars EDL process are identified, also the technical solutions of the pivotal phase are proposed.

Keywords

Mars / landing / mission analysis / technical solutions

Cite this article

Download citation ▾
RAO Wei, SUN Zezhou, MENG LinZhi, WANG Chuang, JI Long. Analysis and Design for the Mars Entry, Descent and Landing Mission. Journal of Deep Space Exploration, 2016, 3(2): 121‒128 https://doi.org/10.15982/j.issn.2095-7777.2016.02.004

References

[1] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报,2014,1(1):1-17.Wu W R,Yu D Y. Development of deep space exploration and its future key technology[J]. Journal of Deep Space Exploration,2014,1(1):1-17.
[2] Manning R M,Adler M A. Landing on Mars[C]//AIAA Space 2005 Conference. Long Beach:AIAA,2005.
[3] Braun R D,Manning R M. Mars exploration entry,descent and landing challenges[C]//2006 IEEE Aerospace Conference. Big Sky,MT:IEEE,2006.
[4] Prakash R,Burkhart P D,Chen A,et al. Mars science laboratory entry,descent and landing system overview[C]//IEEE Aerospace Conference. Big Sky,MT:IEEE,2008,1-18.
[5] Rivellini T P. Challenges of landing on Mars[M]. Washington D. C.:National Academy of Engineering,Frontiers in Engineering,2004.
[6] Chen A,Beck R,Brugarolas P,et al. Entry system design and performance summary for the Mars science laboratory mission[C]//AIAA/AAS Space Flight Mechanics Meeting,American Astronautical.[S. l]:AIAA,2013,413-422.
[7] Anon. Entry data analysis for viking landers 1 and 2 final report,NASA-TN-3770218,NASA-CR-159388[R]. Denver:CO Martin Marietta Corp.,1976.
[8] Braun R D,Powell R W,Engelund W C,et al. Mars pathfinder six-degree-of-freedom entry analysis[J] Journal of Spacecraft and Rockets,1995,32(6):670-676.
[9] Desai P,Schoenenberger M,Cheatwood F M. Mars exploration rover six-degree-of-freedom entry trajectory analysis[J]. Journal of Spacecraft and Rockets,2006,43(5):1019-1025.
[10] Desai P N,Prince J L,Queen E M,et al. Entry,descent,and landing performance of the mars phoenix lander[C]//AIAA Atmospheric Flight Mechanics Conference. USA:AIAA,2008.
[11] Edquist K T,Dyakonov A A,Wright M J,et al. Aerothermo-dynamic design of the Mars science laboratory heatshield[C]//The 41st AIAA Thermophysics Conference. San Antonio,Texas:AIAA,2009.
[12] Willcockson W. Mars pathfinder entry heatshield design and flight experience[J]. Journal of Spacecraft and Rockets,1999,36(3):74-379.
[13] Kipp D,Martin M S,Essmiller J,et al. Mars science laboratory entry,descent,and landing triggers//[C] IEEE Aerospace Conference. Big Sky,MT:IEEE,2007.
[14] Dickinson D,Schlemmer J,Hicks F,et al. Balloon launched decelerator test program,post-flight test report,BLDT Vehicle AV-1,CR-112176[R].[S. l]:NASA,1972.
[15] Preisser J S,Grow R B. High-altitude flight test of a reefed 12.2-meter-diameter disk-gap-band parachute with deployment at a Mach number of 2.58,TN D-6469[R].[S. l]:NASA,1971.
[16] Eckstrom C V,Branscome D R. High-altitude flight test of a disk-gap-band parachute deployed behind a bluff body at a Mach number of 2.69,TM X-2671[R].[S. l]:NASA,1972.
[17] Moog R D,Michel F C. Balloon launched viking decelerator test program summary report,CR-112288[R].[S. l]:NASA,1973.
[18] Henning A B,Lundstrom R R. Flight test of an erectable spacecraft used for decelerator testing at simulated mars entry conditions,NASA TN D-6910[R].[S. l]:NASA,1972.
[19] Lundstrom R R,Jumes L,Raper R J. et al. Flight tests of viking parachute system in three mach number regimes TN D-7692[R].[S. l]:NASA,1974.
[20] Bendura R J,Huckins Ⅲ E K,Coltrane L C. Performance of a 19.7-meter-diameter disk-gap-band parachute in a simulated Martian environment,NASA TM X-1499[R].[S. l]:NASA,1968.
[21] Eckstrom C V. High-altitude flight test of a 40-foot-diameter (12.2-meter) ringsail parachute at a deployment Mach number of 2.95,TN D-5796[R].[S. l]:NASA,1970.
[22] Whitlock C H,Poole L R,Talay T A. Postflight simulation of parachute deployment dynamics of viking qualification flight tests TN D-7415[R].[S. l]:NASA,1973.
PDF(9716 KB)

Accesses

Citations

Detail

Sections
Recommended

/