Research on the Accuracy and Operation Time of Polyhedron Gravity Model Base on 433 Eros

XIAO Yao,RUAN Xiaogang,WEI Ruoyan

PDF(2207 KB)
PDF(2207 KB)
Journal of Deep Space Exploration ›› 2016, Vol. 3 ›› Issue (1) : 41-46. DOI: 10.15982/j.issn.2095-7777.2016.01.006

Research on the Accuracy and Operation Time of Polyhedron Gravity Model Base on 433 Eros

  • XIAO Yao,RUAN Xiaogang,WEI Ruoyan
Author information +
History +

Abstract

This paper adopts the polyhedron gravity modeling methodto calculate the surface gravitational acceleration of 433 Eros using the 3D polyhedron shape models of 433 Eros published by the Planetary Data System(PDS). The accuracy and operation time with different facets of the 3D polyhedron gravity model are also analyzed. The experiments show that the time complexity of polyhedron gravity model is O(n). In the simulation of the guidance, navigation and controlfor landing on 433 Eros, using the shape model with 22 540-facetscan achieve a tradeoff between the computation rate and accuracy.Moreover, since the gravity acceleration can be computed in real-time, it can be used in the hardware-in-the-loop simulation.

Keywords

gravity model / polyhedron model / asteroids / 433 Eros

Cite this article

Download citation ▾
XIAO Yao, RUAN Xiaogang, WEI Ruoyan. Research on the Accuracy and Operation Time of Polyhedron Gravity Model Base on 433 Eros. Journal of Deep Space Exploration, 2016, 3(1): 41‒46 https://doi.org/10.15982/j.issn.2095-7777.2016.01.006

References

[1] Vallado D A, McClain W D. Fundamentals of astrodynamics and applications[M]. Springer Science & Business Media, 2001.
[2] Geissler P, Petit J M, Durda D D, et al. Erosion and ejecta reaccretion on 243 Ida and its moon[J]. Icarus, 1996, 120(1): 140-157.
[3] Werner R A. The gravitational potential of a homogeneous polyhedron or don't cut corners[J]. Celestial Mechanics and Dynamical Astronomy, 1994, 59(3): 253-278.
[4] Werner R A, Scheeres D J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia[J]. Celestial Mechanics and Dynamical Astronomy, 1996, 65(3): 313-344.
[5] Hofmann-Wellenhof B, Moritz H. Physical geodesy[M]. Springer Science & Business Media, 2006.
[6] Chanut T G G, Winter O C, Tsuchida M. 3D stability orbits close to 433 Eros using an effective polyhedral model method[J]. Monthly Notices of the Royal Astronomical Society, 2014, 438(3): 56.
[7] Scheeres D J, Ostro S J, Hudson R S, et al. Dynamics of orbits close to asteroid 4179 Toutatis[J]. Icarus, 1998, 132(1): 53-79.
[8] Raugh A C. Near-a-5-collected-models-V1.0 [EB/OL].[2015-10-05]. http://sbn.psi.edu/pds/resource/nearbrowse.html.
[9] Rossi A, Marzari F, Farinella P. Orbital evolution around irregular bodies[J]. Earth, Planets and Space, 1999, 51(11): 1173-1180.
[10] Lantoine G, Braun R. Optimal trajectories for soft landing on asteroids[R]. AE8900 MS Special Problems Report, Space Systems Design Lab, Georgia Institute of Technology, Dec. 2006.
[11] Hawkins M, Guo Y, Wie B. ZEM/ZEV feedback guidance application to fuel-efficient orbital maneuvers around an irregular-shaped asteroid[C]//AIAA Guidance, Control, and Navigation Conference. Minneapolis, Minnesota: AIAA, 2012.
[12] Yang H, Baoyin H. Fuel-optimal control for soft landing on an irregular asteroid[J]. Aerospace and Electronic Systems, IEEE Transactions on, 2015, 51(3): 1688-1697.
[13] Dunham D W, Farquhar R W, McAdams J V, et al. Implementation of the first asteroid landing[J]. Icarus, 2002, 159(2): 433-438.
PDF(2207 KB)

Accesses

Citations

Detail

Sections
Recommended

/