Research Trend of Dynamics in the Gravitational Field of Irregular Celestial Body

JIANG Yu1, BAOYIN Hexi2

PDF(1670 KB)
PDF(1670 KB)
Journal of Deep Space Exploration ›› 2014, Vol. 1 ›› Issue (4) : 250-261. DOI: 10.15982/j.issn.2095-7777.2014.04.002
Review

Research Trend of Dynamics in the Gravitational Field of Irregular Celestial Body

  • JIANG Yu1, BAOYIN Hexi2
Author information +
History +

Abstract

Both asteroid and comet exploration are important areas in the deep space exploration. The mass of an asteroid or a comet is not big enough, so its gravitational force is much smaller than the stress to satisfy the hydrostatic equilibrium, which makes the minor celestial body irregular-shaped. The research of dynamical behaviours and mechanisms in the gravitational field of irregular celestial body is the basis of minor celestial body exploration, including the catching of the explorer and the design of the orbit around the minor celestial body. This paper summarizes the research progress of the dynamics in the gravitational field of irregular celestial body through gravitational models and dynamical mechanisms. The research situation of gravitational models such as the Legendre polynomial model, the simple-shaped model and the polyhedron model are presented. In addition, the research situation of dynamical mechanisms such as the periodic orbits and quasi-periodic orbits, equilibrium points, manifolds, bifurcations and resonances, chaos, are also presented. Besides, we have analyzed key points and difficult points of these researches. Finally, the research trend of the dynamics in the gravitational field of irregular celestial body is discussed.

Keywords

irregular celestial body / asteroid exploration / comet exploration / astronautic dynamics / dynamical law

Cite this article

Download citation ▾
JIANG Yu, BAOYIN Hexi. Research Trend of Dynamics in the Gravitational Field of Irregular Celestial Body. Journal of Deep Space Exploration, 2014, 1(4): 250‒261 https://doi.org/10.15982/j.issn.2095-7777.2014.04.002

References

[1] Smith B A, Soderblom L, Beebe R, et al. Encounter with Saturn: Voyager 1 imaging science results[J]. Science, 1981,212(4491):163-191.
[2] Broadfoot A L, Sandel B R, Shemansky D E, et al. Extreme ultraviolet observations from Voyager 1 encounter with Saturn[J]. Science, 1981,212(4491):206-211.
[3] Bish D L, Blake D F, Vaniman D T, et al. X-ray diffraction results from Mars Science Laboratory: mineralogy of Rocknest at Gale crater[J]. Science, 2013,341(6153):1238932.
[4] Blake D F, Morris R V, Kocurek G, et al. Curiosity at Gale crater, Mars: characterization and analysis of the Rocknest sand shadow[J]. Science, 2013,341(6153):1239505.
[5] Meslin P Y, Gasnault O, Forni O, et al. Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars[J]. Science, 2013,341(6153):1238670.
[6] Vaniman D T, Bish D L, Ming D W, et al. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars[J]. Science, 2014,343(6169):1243480.
[7] Walsh K J, Morbidelli A, Raymond S N, et al. A low mass for Mars from Jupiter's early gas-driven migration[J]. Nature, 2011,475(7355):206-209.
[8] Saito J, Miyamoto H, Nakamura R, et al. Detailed images of asteroid 25143 Itokawa from Hayabusa[J]. Science, 2006,312(5778):1341-1344.
[9] Jewitt D, Weaver H, Agarwal J. A recent disruption of the main-belt asteroid P/2010 A2[J]. Nature, 2010,467(7317): 817-819.
[10] Nesvorný D, Bottke Jr W F, Dones L, et al.The recent breakup of an asteroid in the main-belt region[J]. Nature, 2002,417(6890):720-771.
[11] Zuber M T, Smith D E, Cheng A F, et al. The shape of 433 Eros from the NEAR-Shoemaker laser rangefinder[J]. Science, 2000,289(5487):2097-2101.
[12] Scheeres D J, Fahnestock E G, Ostro S J, et al. Dynamical configuration of binary near-Earth asteroid (66391) 1999 KW4[J]. Science, 2006,314(5803):1280-1283.
[13] Tsuchiyama A, Uesugi M, Matsushima T, et al. Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa regolith[J]. Science, 2011,333(6046):1125-1128.
[14] Yurimoto H, Abe K I, Abe M, et al. Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission[J]. Science, 2011,333(6046):1116-1119.
[15] Yano H, Kubota T, Miyamoto H, et al. Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa[J]. Science, 2006,312(5778):1350-1353.
[16] Trieloff M, Jessberger E K, Herrwerth I, et al. Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry[J]. Nature, 2003,422(6931):502-506.
[17] Jutzi M, Asphaug E, Gillet P, et al. The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions[J]. Nature, 2013,494(7436):207-210.
[18] Walsh K J, Richardson D C, Michel P. Rotational breakup as the origin of small binary asteroids[J]. Nature, 2008,454(7201):188-191.
[19] Vernazza P, Binzel R P, Rossi A, et al. Solar wind as the origin of rapid reddening of asteroid surfaces[J]. Nature, 2009,458(7241):993-995.
[20] Thomas P C, Veverka J, Robinson M S, et al. Shoemaker crater as the source of most ejecta blocks on the asteroid 433 Eros[J]. Nature, 2001,413(6854):394-396.
[21] Walsh K J, Richardson D C, Michel P. Rotational breakup as the origin of small binary asteroids[J]. Nature, 2008,454(7201):188-191.
[22] Farnham T L, Schleicher D G, Woodney L M, et al. Imaging and photometry of comet C/1999 S4 (LINEAR) before perihelion and after breakup[J]. Science, 2001,292(5520):1348-1353.
[23] Hsieh H H, Jewitt D. A population of comets in the main asteroid belt[J]. Science, 2006,312(5773):561-563.
[24] Snodgrass C, Tubiana C, Vincent J B, et al. A collision in 2009 as the origin of the debris trail of asteroid P/2010 A2[J]. Nature, 2010,467(7317):814-816.
[25] Küppers M, Bertini I, Fornasier S, et al. A large dust/ice ratio in the nucleus of comet 9P/Tempel 1[J]. Nature, 2005,437(7061):987-990.
[26] Martins Z, Price M C, Goldman N, et al. Shock synthesis of amino acids from impacting cometary and icy planet surface analogues[J]. Nature Geoscience, 2013(6):1045-1049.
[27] Sunshine J M, A'Hearn M F, Groussin O, et al. Exposed water ice deposits on the surface of comet 9P/Tempel 1[J]. Science, 2006,311(5766):1453-1455.
[28] Zolensky M E, Zega T J, Yano H, et al. Mineralogy and petrology of comet 81P/Wild 2 nucleus samples[J]. Science, 2006,314(5806):1735-1739.
[29] Nuth J A, Hill H G, Kletetschka G. Determining the ages of comets from the fraction of crystalline dust[J]. Nature, 2000,406(6793):275-276.
[30] Ishii H A, Bradley J P, Dai Z R, et al. Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets[J]. Science, 2008,319(5862):447-450.
[31] Gloeckler G, Geiss J, Schwadron N A, et al. Interception of comet Hyakutake's ion tail at a distance of 500 million kilometres[J]. Nature, 2000,404(6778):576-578.
[32] Abe S, Mukai T, Hirata N, et al. Mass and local topography measurements of Itokawa by Hayabusa[J]. Science, 2006,312(5778):1344-1347.
[33] Soderblom L A, Becker T L, Bennett G, et al. Observations of comet 19P/Borrelly by the miniature integrated camera and spectrometer aboard Deep Space 1[J]. Science, 2002,296(5570):1087-1091.
[34] Brown M E, Schaller E L. The mass of dwarf planet Eris[J]. Science, 2007,316(5831):1585-1585.
[35] Pravec P, Šarounová L, Wolf M. Lightcurves of 7 near-Earth asteroids[J]. Icarus, 1996,124(2):471-482.
[36] Ostro S J, Scott R, Nolan M C, et al. Radar observations of asteroid 216 Kleopatra[J]. Science, 2000,288(5467):836-839.
[37] Yin Q, Jacobsen S B, Yamashita K, et al. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites[J]. Nature, 2002,418(6901):949-952.
[38] Klekociuk A R, Brown P G, Pack D W, et al. Meteoritic dust from the atmospheric disintegration of a large meteoroid[J]. Nature, 2005,436(7054):1132-1135.
[39] Porubčan V, Kornoš L. The Lyrid Meteor Stream: Orbit and Structure[J]. Earth, Moon and Planets, 2008(102):91-94.
[40] Newly-discovered, bus-sized asteroid zips by Earth; 2014 HL129 comes closer than Moon[EB/OL].[2014-07-30].http://www.ibtimes.co.in/articles/551075/20140505/bus-size-asteroid-2014-hl129-zips-earth.htm.
[41] Ćuk M, Burns J A. Effects of thermal radiation on the dynamics of binary NEAs[J]. Icarus, 2005,176(2):418-431.
[42] Benner L A, Ostro S J, Magri C, et al. Near-Earth asteroid surface roughness depends on compositional class[J]. Icarus, 2008,198(2):294-304.
[43] Belton M J S, Veverka J, Thomas P, et al. Galileo encounter with 951 Gaspra: First pictures of an asteroid[J]. Science, 1992,257(5077):1647-1652.
[44] Thomas P C, Veverka J, Simonelli D, et al. The shape of Gaspra[J]. Icarus, 1994,107(1):23-36.
[45] Gaspra Approach Sequence[EB/OL].[2014-07-30]. http://www.solarviews.com/cap/ast/gaspra4.htm.
[46] Belton M J S, Chapman C R, Veverka J, et al. First images of asteroid 243 Ida[J]. Science, 1994,265(5178):1543-1547.
[47] Chapman C R, Veverka J, Thomas P C, et al. Discovery and physical properties of Dactyl, a satellite of asteroid 243 Ida[J]. Nature, 1995,374(6525):783-785.
[48] Helfenstein P, Veverka J, Thomas P C, et al. Galileo photometry of asteroid 243 Ida[J]. Icarus, 1996,120(1):48-65.
[49] Geissler P, Petit J M, Durda D D, et al. Erosion and ejecta reaccretion on 243 Ida and its moon[J]. Icarus, 1996,120(1):140-157.
[50] Sullivan R, Greeley R, Pappalardo R, et al. Geology of 243 Ida[J]. Icarus, 1996,120(1):119-139.
[51] Ida and dactyl in enhanced color[EB/OL].[2014-07-30].http://www.solarviews.com/cap/ast/idamnclr.htm.
[52] Vokrouhlický D, Nesvorný D, Bottke W F. The vector alignments of asteroid spins by thermal torques[J]. Nature, 2003,425(6954):147-151.
[53] Barucci M A, Cheng A F, Michel P, et al. MarcoPolo-R near earth asteroid sample return mission[J]. Experimental Astronomy, 2012,33(2-3):645-684.
[54] Schulz R, Stuwe J A, Boehnhardt H. Rosetta target comet 67P/Churyumov-Gerasimenko[J]. Astronomy and Astrophysics, 2004,422(1):19-21.
[55] Gicquel A, Bockelée-Morvan D, Leyrat C, et al. Model of dust thermal emission of comet 67P/Churyumov-Gerasimenko for the Rosetta/MIRO instrument[J]. Planetary and Space Science, 2013(85):214-219.
[56] Keller H U, Jorda L, Küppers M, et al. Deep impact observations by OSIRIS onboard the rosetta spacecraft[J]. Science, 2005(310):281-283.
[57] Kozai Y. The motion of a close earth satellite[J]. The Astronomical Journal, 1959(64):367-377.
[58] Brouwer D. Solution of the problem of artificial satellite theory without drag[J]. The Astronomical Journal, 1959(64):378.
[59] Izsak I G. A note on perturbation theory[J]. The Astronomical Journal, 1963(68):559-560.
[60] Lass H, Blitzer L. The gravitational potential due to uniform disks and rings[J]. Celestial Mechanics, 1983,30(3):225-228.
[61] Balmino G. Gravitational potential harmonics from the shape of a homogeneous body[J]. Celestial Mechanics and Dynamical Astronomy, 1994,60(3):331-364.
[62] Eckhardt D H, Pestaña J L G. Technique for modeling the gravitational field of a galactic disk[J]. Astrophysics Journal, 2002, 572(2):135-137.
[63] Elipe A, Riaguas A. Nonlinear stability under a logarithmic gravity field[J]. International Mathematics Journal. 2003(3):435-453.
[64] Broucke R A, Elipe A. The dynamics of orbits in a potential field of a solid circular ring[J]. Regular and Chaotic Dynamics, 2005, 10(2):129-143.
[65] Alberti A, Vidal C. Dynamics of a particle in a gravitational field of a homogeneous annulus disk[J]. Celestial Mechanics and Dynamical Astronomy, 2007, 98(2):75-93.
[66] Najid N E, Elourabi E H, Zegoumou M. Potential generated by a massive inhomogeneous straight segment[J]. Research in Astronomy and Astrophysics, 2011, 11(3):345-352.
[67] Chappell J M, Chappell M J, Iqbal A, et al. The gravity field of a cube[J]. Physics International, 2012(3): 50-57.
[68] Werner R A. The gravitational potential of a homogeneous polyhedron or don't cut corners[J]. Celestial Mechanics and Dynamical Astronomy, 1994, 59(3):253-278.
[69] Werner R A, Scheeres D J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia[J]. Celestial Mechanics and Dynamical Astronomy, 1997, 65(3):313-344.
[70] Esposito P, Roth D, Demcak S. Mars Observer orbit determination analysis[J]. Journal of Spacecraft and Rockets, 1991, 28(5):530-535.
[71] Hartmann W K. The shape of Kleopatra[J]. Science, 2000, 288 (5467):820-821.
[72] Descamps P, Ostro S J, Hudson R S, et al. Radar observations of asteroid 216 Kleopatra[J]. Science, 2000,288(5467):836-839.
[73] Marchis F, Berthier J. Triplicity and physical characteristics of Asteroid (216) Kleopatra[J]. Icarus, 2011,211(2):1022-1033.
[74] Descamps P, Marchis F, Berthier J, et al. Triplicity and physical characteristics of Asteroid (216) Kleopatra[J]. Icarus, 2011,211(2):1022-1033.
[75] Ostro S J, Hudson R S, Nolan M C. Radar observations of asteroid 216 Kleopatra[J]. Science, 2000,288(5467):836-839.
[76] Ostro S J, Rosema K D, Hudson R S, et al. Extreme elongation of asteroid 1620 Geographos from radar images[J]. Nature, 1995,375(6531):474-477.
[77] Hudson R S, Ostro S J. Physical model of asteroid 1620 Geographos from radar and optical data[J]. Icarus, 1999,140(2):369-378.
[78] Chiorny V G, Hamanowa H, Reddy V, et al.Detection of the YORP effect in asteroid (1620) Geographos[J]. Astronomy & Astrophys, 2008(489):25-28.
[79] Pravec P, Wolf M, Šarounová L. Lightcurves of 26 near-Earth asteroids[J]. Icarus, 1998,136(1):124-153.
[80] Ryabova G O. Asteroid 1620 Geographos: I. Rotation[J]. Solar System Research, 2002,36(2):168-174.
[81] Benner L A M, Hudson R S, Ostro S J, et al. Radar observations of asteroid 2063 Bacchus[J]. Icarus, 1999,139(2):309-327.
[82] Hudson R S, Ostro S J. Shape of asteroid 4769 Castalia (1998 PB) from inversion of radar images[J]. Science, 1994,263(5149):940-943.
[83] Hudson R S, Ostro S J, Harris A W. Constraints on spin state and hapke parameters of asteroid 4769 Castalia using lightcurves and a radar-derived shape model[J]. Icarus, 1997,130(1):165-176.
[84] Mottola S, Erikson A, Harris A W, et al. Physical model of near-Earth asteroid 6489 Golevka (1991 JX) from optical and infrared observations[J]. The Astronomical Journal, 1997,114(3):1234-1245.
[85] Müller T G, Sekiguchi T, Kaasalainen M, et al. Thermal infrared observations of the Hayabusa spacecraft target asteroid 25143 Itokawa[J]. Astronomy and Astrophysics, 2005,443(1):347-355.
[86] Abe S, Mukai T, Hirata N, et al. Mass and local topography measurements of Itokawa by Hayabusa[J]. Science, 2006,312(5778):1344-1347.
[87] Demura H, Kobayashi S, Nemoto E, et al. Pole and global shape of 25143 Itokawa[J]. Science, 2006,312(5778):1347-1349.
[88] Fujiwara A, Kawaguchi J, Yeomans D K, et al. The rubble-pile asteroid Itokawa as observed by Hayabusa[J]. Science, 2006, 312(5778):1330-1334.
[89] Hiroi T, Abe M, Kitazato K, et al. Developing space weathering on the asteroid 25143 Itokawa[J]. Nature, 2006,443(7107):56-58.
[90] Saito J, Miyamoto H, Nakamura R, et al. Detailed Images of Asteroid 25143 Itokawa from Hayabusa[J]. Science, 2006, 312 (5778):1341-1344.
[91] Taylor P A, Margot J L, Vokrouhlický D, et al. Spin rate of asteroid (54509) 2000 PH5 increasing due to the YORP effect[J]. Science, 2007, 316(5822):274-277.
[92] Veverka J, Farquhar B, Robinson M, et al. The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros[J]. Nature, 2001, 413(6854):390-393.
[93] Connors M, Wiegert P, Veillet C. Earth's Trojan asteroid[J]. Nature, 2011, 475(7357):481-483.
[94] Stooke P. Small body shape models. EAR-A-5-DDR-STOOKE-SHAPE-MODELS-V1.0. NASA planetary data system[R]. Washington D.C.: NASA, 2002.
[95] Neese C Ed. Small body radar shape models V2.0. EAR-A-5-DDR-RADARSHAPE-MODELS-V2.0, NASA Planetary Data System[R]. Washington D.C.: NASA, 2004.
[96] Riaguas A, Elipe A, Lara M. Periodic orbits around a massive straight segment[J]. Celestial Mechanics and Dynamical Astronomy, 1999, 73(1/4):169-178.
[97] Riaguas A, Elipe A, López-Moratalla T. Non-linear stability of the equilibria in the gravity field of a finite straight segment[J]. Celestial Mechanics and Dynamical Astronomy, 2001, 81(3):235-248.
[98] Arribas A, Elipe A. Non-integrability of the motion of a particle around a massive straight segment[J]. Physics Letters A, 2001(281):142-148.
[99] Elipe A, Lara M. A simple model for the chaotic motion around (433) Eros[J]. Journal of Astronomy Science, 2003, 51(4):391-404.
[100] Romero S G, Palacián J F, Yanguas P. The invariant manifolds of a finite straight segment[J]. Monografías de la Real Academia de Ciencias de Zaragoza, 2004(25):137-148.
[101] Blesa F. Periodic orbits around simple shaped bodies[J]. Monogr. Semin. Mat. García Galdeano, 2006(33):67-74.
[102] Fukushima T. Precise computation of acceleration due to uniform ring or disk[J]. Celestial Mechanics and Dynamical Astronomy, 2010, 108(4):339-356.
[103] Linder J F, Lynn J, King F W, et al.Order and chaos in the rotation and revolution of a line segment and a point[J]. Physical Review E, 2010(81):036208.
[104] Liu X, Baoyin H, Ma X. Equilibria, periodic orbits around equilibria, and heteroclinic connections in the gravity field of a rotating homogeneous cube[J]. Astrophysics and Space Science, 2011(333):409-418.
[105] Liu X, Baoyin H, Ma X. Periodic orbits in the gravity field of a fixed homogeneous cube[J]. Astrophysics and Space Science, 2011(334):357-364.
[106] Najid N E, Zegoumou M, Elourabi E H. Dynamical behavior in the vicinity of a circular anisotropic ring[J]. Open Astronomy Journal, 2012(5):54-60.
[107] Liu X, Baoyin H, Ma X. Dynamics of surface motion on a rotating massive homogeneous body[J]. Science China-Physics, Mechanics and Astronomy, 2013(56):818-829.
[108] Li X, Qiao D, Cui P. The equilibria and periodic orbits around a dumbbell-shaped body[J]. Astrophysics and Space Science, 2013(348):417-426.
[109] Takahashi Y, Scheeres D J, Werner R A. Surface gravity fields for asteroids and comets[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):362-374.
[110] Asphaug E, Ostro S J, Hudson R S, et al. Disruption of kilometre-sized asteroids by energetic collisions[J]. Nature, 1998, 393(6684):437-440.
[111] Mirtich B. Fast and accurate computation of polyhedral mass properties[J]. Journal of Graphics Tools, 1996,1(2):31-50.
[112] Scheeres D J, Ostro S J, Hudson R S, et al. Orbits close to asteroid 4769 Castalia, Icarus, 1996(121):67-87.
[113] Scheeres D J, Ostro S J, Hudson R S, et al. Dynamics of orbits close to asteroid 4179 Toutatis. Icarus, 1998,132(1):53-79.
[114] Scheeres D J, Williams B G, Miller J K. Evaluation of the dynamic environment of an asteroid: applications to 433 Eros[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3):466-475.
[115] Scheeres D J. The orbital dynamics environment of 433 Eros[J]. Ann Arbor, 2002(1001):48109-2140.
[116] Scheeres D J, Broschart S, Ostro S J,et al.The dynamical environment about Asteroid 25143 Itokawa[C]//Proceedings of the Twenty-Fourth International Symposium on Space Technology and Science. [S.l.]: [s.n.], 2004:456-461.
[117] Scheeres D J, Broschart S, Ostro S J, et al. The dynamical environment about Asteroid 25143 Itokawa: target of the Hayabusa Mission[C]//Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit. [S.l.]: AIAA/AAS, 2004:1-12.
[118] Scheeres D J. Orbital mechanics about small bodies[J]. Acta Astronautica,2012(7):21-14.
[119] Mondelo J M, Broschart S B, Villac B F. Dynamical analysis of 1: 1 resonances near asteroids: application to Vesta[C]//Proceedings of the 2010 AIAA/AAS Astrodynamics Specialists Conference.Toronto:[s. n.], 2010:1-15.
[120] Yu Y, Baoyin H. Orbital dynamics in the vicinity of asteroid 216 Kleopatra[J]. The Astronomical Journal, 2012,143(3):62-70.
[121] Yu Y, Baoyin H. Generating families of 3D periodic orbits about asteroids[J]. Monthly Notices of the Royal Astronomical Society, 2012,427(1):872-881.
[122] Yu Y, Baoyin H. Resonant orbits in the vicinity of asteroid 216 Kleopatra[J]. Astrophysics and Space Science, 2013,343(1):75-82.
[123] Jiang Y, Baoyin H, Li J,et al.Orbits and manifolds near the equilibrium points around a rotating asteroid[J]. Astrophysics and Space Science, 2014(349):83-106.
[124] Jiang Y, Baoyin H. Orbital mechanics near a rotating asteroid[J]. Journal of Astrophysics and Astronomy, 2014,35(1):17-38.
[125] Hirabayashi M, Scheeres D J. Analysis of Asteroid (216) Kleopatra using dynamical and structural constraints[J]. The Astrophysical Journal, 2014,780(2):160-171.
[126] Chanut T G G, Winter O C, Tsuchida M. 3D stability orbits close to 433 Eros using an effective polyhedral model method[J]. Monthly Notices of the Royal Astronomical Society, 2014(2383):1-11.
[127] Wang X, Jiang Y, Gong S. Analysis of the potential field and equilibrium points of irregular-shaped minor celestial bodies[J]. Astrophysics and Space Science, 2014(353):105-121.
[128] Werner R A, Scheeres D J. Mutual potential of homogeneous polyhedra[J]. Celestial Mechanics and Dynamical Astronomy, 2005, 91(3-4):337-349.
[129] Fahnestock E G, Scheeres D J. Simulation of the full two rigid body problem using polyhedral mutual potential and potential derivatives approach[J].Celestial Mechanics and Dynamical Astronomy, 2006, 96(3-4):317-339.
[130] Fahnestock E G, Scheeres D J. Simulation and analysis of the dynamics of binary near-Earth Asteroid (66391) 1999 KW4[J]. Icarus, 2008, 194(2):410-435.
[131] Riaguas A, Elipe A, Lara M. Periodic orbits around a massive straight segment[J]. Celestial Mechanics and Dynamical Astronomy, 1999, 73(1/4):169-178.
[132] Riaguas A, Elipe A, López-Moratalla T. Non-linear stability of the equilibria in the gravity field of a finite straight segment[J].Celestial Mechanics and Dynamical Astronomy, 2001, 81(3):235-248.
[133] Hu W, Scheeres D J. Spacecraft motion about slowly rotating asteroids[J].Journal of Guidance, Control, and Dynamics, 2002, 25(4):765-775.
[134] Hu W, Scheeres D J. Numerical determination of stability regions for orbital motion in uniformly rotating second degree and order gravity fields[J].Planetary and Space Science, 2004, 52(8):685-692.
[135] Provisional designations[EB/OL].[2014-07-30].http://www.minorplanetcenter.net/iau/lists/Desigs.html.
[136] Igumenshchev I V, Shustov B M, Tutukov A V. Dynamics of supershells-Blow-out[J]. Astronomy and Astrophysics, 1990(234):396-402.
[137] Iben Jr I, Tutukov A V. Helium star cataclysmics[J].The Astrophysical Journal, 1991(370):615-629.
[138] Yungelson L R, Tutukov A V, Livio M. The formation of binary and single nuclei of planetary nebulae[J].The Astrophysical Journal, 1993(418):794-803.
[139] Firmani C, Tutukov A V. Bursting and stationary star formation in disks and nuclei of galaxies[J].Astronomy and Astrophysics, 1994(288):713-730.
[140] Tutukov A V, Yungelson L R. Merging of binary white dwarfs neutron stars and black-holes under the influence of gravitational wave radiation[J]. Monthly Notices of the Royal Astronomical Society, 1994(268):871-879.
[141] Tutukov A V, Krügel E. The main types of star formation in galactic nuclei[J]. Astronomy and Astrophysics, 1995(299):25-33.
[142] Tutukov A V, Yungelson L. Double-degenerate semidetached binaries with helium secondaries: cataclysmic variables, supersoft X-ray sources, supernovae and accretion-induced collapses[J].Monthly Notices of the Royal Astronomical Society, 1996,280(4):1035-1045.
[143] Firmani C, Avila-Reese V, Ghisellini G,et al.Formation rate, evolving luminosity function, jet structure, and progenitors for long gamma-ray bursts[J]. The Astrophysical Journal, 2004,611(2):1033-1045.
[144] Acharova I A, Lépine J R D, Mishurov Y N, et al. A mechanism for the formation of oxygen and iron bimodal radial distribution in the disc of our Galaxy[J].Monthly Notices of the Royal Astronomical Society, 2010, 402(2): 1149-1155.
[145] Tutukov A V, Fedorova A V. Formation of planets during the evolution of single and binary stars[J].Astronomy reports, 2012, 56(4):305-314.
[146] Moore, C. Braids in classical dynamics[J].Physical Review Letters, 1993, 70 (24):3675-3679.
[147] Galán J, Munoz-Almaraz F J, Freire E, et al. Stability and bifurcations of the figure-8 solution of the three-body problem[J].Physical Review Letters, 2002, 88(24):241101.
[148] Šuvakov M, Dmitrašinović V. Three classes of newtonian three-body planar periodic orbits[J]. Physical Review Letters, 2013,110(11):114301.
[149] Jon Cartwright. Physicists discover a whopping 13 new solutions to three-body problem. science. now[EB/OL].(2013-03-08).http://news.sciencemag.org/physics/2013/03/physicists-discover-whopping-13-new-solutions-three-body-problem.
[150] Hiroi T, Abe M, Kitazato K, et al. Developing space weathering on the asteroid 25143 Itokawa[J]. Nature, 2006,443(7107):56-58.
[151] Kleine T, Münker C, Mezger K, et al. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry[J]. Nature, 2002,418(6901):952-955.
[152] Sánchez P, Scheeres D J. Simulating asteroid rubble piles with a self-gravitating soft-sphere distinct element method model[J]. The Astrophysical Journal, 2011,727(2):120.
[153] Tancredi G, Maciel A, Heredia L, et al. Granular physics in low-gravity environments using discrete element method[J]. Monthly Notices of the Royal Astronomical Society, 2012,420(4):3368-3380.
[154] Tobias S M, Dagon K, Marston J B. Astrophysical fluid dynamics via direct statistical simulation[J]. The Astrophysical Journal, 2011,727(2):127-138.
[155] Genel S, Vogelsberger M, Nelson D, et al. Following the flow: tracer particles in astrophysical fluid simulations[J]. Monthly Notices of the Royal Astronomical Society, 2013,435(2):1426-1442.
[156] Smale S. Mathematical problems for the next century[J]. The Mathematical Intelligencer, 1998,20(2):7-15.
PDF(1670 KB)

Accesses

Citations

Detail

Sections
Recommended

/