Electrochemical ammonia oxidation reaction: From mechanistic understanding to practical applications

Lei Fan, Rui Jiang, Yumin Da, Yukun Xiao, Hongqiang Jin, Xiang Chen, Wei Chen

InfoScience ›› 2024, Vol. 1 ›› Issue (1) : e12025.

PDF
InfoScience ›› 2024, Vol. 1 ›› Issue (1) : e12025. DOI: 10.1002/inc2.12025
REVIEW

Electrochemical ammonia oxidation reaction: From mechanistic understanding to practical applications

Author information +
History +

Abstract

Electrochemical ammonia oxidation reaction (AOR) presents a promising avenue for realizing sustainable nitrogen cycling in various energy and environmental applications. However, sluggish catalytic activity, catalyst poisoning effects, and low stability pose significant challenges. Developing efficient electrocatalysts with high activity and stability necessitates a thorough understanding of the complex mechanisms and various reaction intermediates. In this review, we first discuss the AOR mechanism and the operando/in-situ characterization techniques employed for elucidating the reaction mechanisms. Subsequently, we summarize the development of AOR electrocatalysts, including noble-metal-based catalysts, non-noble-metal-based catalysts, and homogeneous catalysts. We also highlight the primary practical applications of AOR in energy, environment and chemical production fields, including direct ammonia fuel cells, chemical production of nitrates, nitrites, hydrogen, and wastewater treatment. Finally, based on the progress in electrochemical AOR, we discuss the challenges and propose future directions for advancing this field.

Keywords

electrochemical ammonia oxidation / mechanistic understanding / practical applications / sustainable ammonia cycling

Cite this article

Download citation ▾
Lei Fan, Rui Jiang, Yumin Da, Yukun Xiao, Hongqiang Jin, Xiang Chen, Wei Chen. Electrochemical ammonia oxidation reaction: From mechanistic understanding to practical applications. InfoScience, 2024, 1(1): e12025 https://doi.org/10.1002/inc2.12025

References

[1.]
Gao W, Guo J, Wang P, et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat Energy. 2018; 3(12): 1067-1075.
[2.]
Valera-Medina A, Amer-Hatem F, Azad AK, et al. Review on ammonia as a potential fuel: from synthesis to economics. Energy Fuels. 2021; 35(9): 6964-7029.
[3.]
Zhong J-Q, Zhou X, Yuan K, et al. Probing the effect of the Pt-Ni-Pt(111) bimetallic surface electronic structures on the ammonia decomposition reaction. Nanoscale. 2017; 9(2): 666-672.
[4.]
Jiao F, Xu B. Electrochemical ammonia synthesis and ammonia fuel cells. Adv Mater. 2019; 31(31):1805173.
[5.]
Chatterjee S, Parsapur RK, Huang K-W. Limitations of ammonia as a hydrogen energy carrier for the transportation sector. ACS Energy Lett. 2021; 6(12): 4390-4394.
[6.]
MacFarlane DR, Cherepanov PV, Choi J, et al. A roadmap to the ammonia economy. Joule. 2020; 4(6): 1186-1205.
[7.]
Ye D, Tsang SCE. Prospects and challenges of green ammonia synthesis. Nat Synth. 2023; 2(7): 612-623.
[8.]
Fu X, Pedersen JB, Zhou Y, et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science. 2023; 379(6633): 707-712.
[9.]
Chang W, Jain A, Rezaie F, Manthiram K. Lithium-mediated nitrogen reduction to ammonia via the catalytic solid-electrolyte interphase. Nat Catal. 2024; 7(3): 231-241.
[10.]
Tian Y, Mao Z, Wang L, Liang J. Green chemistry: advanced electrocatalysts and system design for ammonia oxidation. Small Struct. 2023; 4(6):2200266.
[11.]
Ding X, Ji Y, Huang H, et al. Electrocatalysis of the ammonia oxidation reaction. Chem Catal. 2024; 4(6):100932.
[12.]
Lee SA, Lee MG, Jang HW. Catalysts for electrochemical ammonia oxidation: trend, challenge, and promise. Sci China Mater. 2022; 65(12): 3334-3352.
[13.]
Lyu Z-H, Fu J, Tang T, Zhang J, Hu J-S. Design of ammonia oxidation electrocatalysts for efficient direct ammonia fuel cells. EnergyChem. 2023; 5(3):100093.
[14.]
Wei R-L, Liu Y, Chen Z, Jia WS, Yang YY, Cai WB. Ammonia oxidation on iridium electrode in alkaline media: an in situ ATR-SEIRAS study. J Electroanal Chem. 2021; 896:115254.
[15.]
Gootzen JFE, Wonders AH, Visscher W, Van Santen RA, Van Veen JAR. A DEMS and cyclic voltammetry study of NH3 oxidation on platinized platinum. Electrochim Acta. 1998; 43(12-13): 1851-1861.
[16.]
Yang Y, Kim J, Jo H, et al. A rigorous electrochemical ammonia electrolysis protocol with in operando quantitative analysis. J Mater Chem A. 2021; 9(19): 11571-11579.
[17.]
Pillai HS, Li Y, Wang SH, et al. Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks. Nat Commun. 2023; 14(1): 792.
[18.]
Zhao Y, Setzler BP, Wang J, et al. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule. 2019; 3(10): 2472-2484.
[19.]
Wang T, Zhao Y, Setzler BP, Abbasi R, Gottesfeld S, Yan Y. A high-performance 75 W direct ammonia fuel cell stack. Cell Rep Phys Sci. 2022; 3(4):100829.
[20.]
Elnabawy AO, Herron JA, Karraker S, Mavrikakis M. Structure sensitivity of ammonia electro-oxidation on transition metal surfaces: a first-principles study. J Catal. 2021; 397: 137-147.
[21.]
Oswin HG, Salomon M. The anodic oxidation of ammonia at platinum black electrodes in aqueous koh electrolyte. Can J Chem. 1963; 41(7): 1686-1694.
[22.]
Gerischer H, Mauerer A. Untersuchungen Zur anodischen Oxidation von Ammoniak an Platin-Elektroden. J Electroanal Chem Interfacial Electrochem. 1970; 25(3): 421-433.
[23.]
de Vooys ACA, Koper MTM, van Santen RA, van Veen JAR. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes. J Electroanal Chem. 2001; 506(2): 127-137.
[24.]
Skachkov D, Venkateswara Rao C, Ishikawa Y. Combined first-principles molecular dynamics/density functional theory study of ammonia electrooxidation on Pt(100) electrode. J Phys Chem C. 2013; 117(48): 25451-25466.
[25.]
Venturini SI,Martins de Godoi DR, Perez J. Challenges in electrocatalysis of ammonia oxidation on platinum surfaces: discovering reaction pathways. ACS Catal. 2023; 13(16): 10835-10845.
[26.]
Katsounaros I, Figueiredo MC, Calle-Vallejo F, et al. On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(1 0 0) in alkaline environment. J Catal. 2018; 359: 82-91.
[27.]
Matsui T, Suzuki S, Katayama Y, et al. In situ attenuated total reflection infrared spectroscopy on electrochemical ammonia oxidation over Pt electrode in alkaline aqueous solutions. Langmuir. 2015; 31(42): 11717-11723.
[28.]
Ye J-Y, Lin JL, Zhou ZY, et al. Ammonia electrooxidation on dendritic Pt nanostructures in alkaline solutions investigated by in-situ FTIR spectroscopy and online electrochemical mass spectroscopy. J Electroanal Chem. 2018; 819: 495-501.
[29.]
Vidal-Iglesias FJ, Solla-Gullón J, Pérez JM, Aldaz A. Evidence by SERS of azide anion participation in ammonia electrooxidation in alkaline medium on nanostructured Pt electrodes. Electrochem Commun. 2006; 8(1): 102-106.
[30.]
Yang K, Liu J, Yang B. Electrocatalytic oxidation of ammonia on Pt: mechanistic insights into the formation of N2 in alkaline media. J Catal. 2022; 405: 626-633.
[31.]
Choueiri RM, Tatarchuk SW, Klinkova A, Chen LD. Mechanism of ammonia oxidation to dinitrogen, nitrite, and nitrate on β-Ni(OH)2 from first-principles simulations. Electrochem Sci Adv. 2022; 2(6):e2100142.
[32.]
Herron JA, Ferrin P, Mavrikakis M. Electrocatalytic oxidation of ammonia on transition-metal surfaces: a first-principles study. J Phys Chem C. 2015; 119(26): 14692-14701.
[33.]
Liu P, Lu M, Zheng Q, Zhang Y, Dewald HD, Chen H. Recent advances of electrochemical mass spectrometry. Analyst. 2013; 138(19): 5519-5539.
[34.]
Zhao K, Jiang X, Wu X, et al. Recent development and applications of differential electrochemical mass spectrometry in emerging energy conversion and storage solutions. Chem Soc Rev. 2024; 53(13): 6917-6959.
[35.]
Wasmus S, Vasini EJ, Krausa M, Mishima HT, Vielstich W. DEMS-cyclic voltammetry investigation of the electrochemistry of nitrogen compounds in 0.5 M potassium hydroxide. Electrochim Acta. 1994; 39(1): 23-31.
[36.]
Zaera F. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chem Soc Rev. 2014; 43(22): 7624-7663.
[37.]
Katayama Y, Okanishi T, Muroyama H, Matsui T, Eguchi K. Enhanced supply of hydroxyl species in CeO2-modified platinum catalyst studied by in situ ATR-FTIR spectroscopy. ACS Catal. 2016; 6(3): 2026-2034.
[38.]
Hess C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem Soc Rev. 2021; 50(5): 3519-3564.
[39.]
De Vooys ACA, Mrozek M, Koper M, van Santen R, van Veen J, Weaver M. The nature of chemisorbates formed from ammonia on gold and palladium electrodes as discerned from surface-enhanced Raman spectroscopy. Electrochem Commun. 2001; 3(6): 293-298.
[40.]
van Santen RA, Niemantsverdriet HJW. Chemical Kinetics and Catalysis. Springer Science & Business Media; 2013.
[41.]
Endo K, Katayama Y, Miura T. Pt-Ir and Pt-Cu binary alloys as the electrocatalyst for ammonia oxidation. Electrochim Acta. 2004; 49(9-10): 1635-1638.
[42.]
Rosca V, Koper MTM. Electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) surfaces. Phys Chem Chem Phys. 2006; 8(21): 2513-2524.
[43.]
Bertin E, Roy C, Garbarino S, et al. Effect of the nature of (100) surface sites on the electroactivity of macroscopic Pt electrodes for the electrooxidation of ammonia. Electrochem Commun. 2012; 22: 197-199.
[44.]
Solla-Gullón J, Vidal-Iglesias FJ, Rodríguez P, et al. In situ surface characterization of preferentially oriented platinum nanoparticles by using electrochemical structure sensitive adsorption reactions. J Phys Chem B. 2004; 108(36): 13573-13575.
[45.]
Liu J, Zhong C, Yang Y, et al. Electrochemical preparation and characterization of Pt particles on ITO substrate: morphological effect on ammonia oxidation. Int J Hydrog Energy. 2012; 37(11): 8981-8987.
[46.]
Liu J, Hu W, Zhong C, Cheng YF. Surfactant-free electrochemical synthesis of hierarchical platinum particle electrocatalysts for oxidation of ammonia. J Power Sources. 2013; 223: 165-174.
[47.]
Johnston S, Suryanto BHR, MacFarlane DR. Electro-oxidation of ammonia on electrochemically roughened platinum electrodes. Electrochim Acta. 2019; 297: 778-783.
[48.]
Li Y, Li X, Pillai HS, et al. Ternary PtIrNi catalysts for efficient electrochemical ammonia oxidation. ACS Catal. 2020; 10(7): 3945-3957.
[49.]
Xi X, Fan Y, Zhang K, et al. Carbon-free sustainable energy technology: electrocatalytic ammonia oxidation reaction. Chem Eng J. 2022; 435:134818.
[50.]
Zhong C, Liu J, Ni Z, Deng Y, Chen B, Hu W. Shape-controlled synthesis of Pt-Ir nanocubes with preferential (100) orientation and their unusual enhanced electrocatalytic activities. Sci China Mater. 2014; 57(1): 13-25.
[51.]
Lin X, Zhang X, Wang Z, et al. Hyperbranched concave octahedron of PtIrCu nanocrystals with high-index facets for efficiently electrochemical ammonia oxidation reaction. J Colloid Interface Sci. 2021; 601: 1-11.
[52.]
Li Y, Pillai HS, Wang T, et al. High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy Environ Sci. 2021; 14(3): 1449-1460.
[53.]
Liu Z, Li Y, Zhang X, et al. Surface structure engineering of PtPd nanoparticles for boosting ammonia oxidation electrocatalysis. ACS Appl Mater Interfaces. 2022; 14(25): 28816-28825.
[54.]
He S, Chen Y, Wang M, et al. Metal nitride nanosheets enable highly efficient electrochemical oxidation of ammonia. Nano Energy. 2021; 80:105528.
[55.]
Kapałka A, Cally A, Neodo S, Comninellis C, Wächter M, Udert KM. Electrochemical behavior of ammonia at Ni/Ni(OH)2 electrode. Electrochem Commun. 2010; 12(1): 18-21.
[56.]
Shih Y-J, Huang Y-H, Huang CP. In-situ electrochemical formation of nickel oxyhydroxide (NiOOH) on metallic nickel foam electrode for the direct oxidation of ammonia in aqueous solution. Electrochim Acta. 2018; 281: 410-419.
[57.]
Xu W, Lan R, Du D, et al. Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia. Appl Catal B Environ. 2017; 218: 470-479.
[58.]
Zhang HM, Wang YF, Kwok YH, Wu ZC, Xia DH, Leung DYC. A direct ammonia microfluidic fuel cell using NiCu nanoparticles supported on carbon nanotubes as an electrocatalyst. ChemSusChem. 2018; 11(17): 2889-2897.
[59.]
Feng Y, Huang L, Xiao Z, et al. Temporally decoupled ammonia splitting by a Zn-NH3 battery with an ammonia oxidation/hydrogen evolution bifunctional electrocatalyst as a cathode. J Am Chem Soc. 2024; 146(11): 7771-7778.
[60.]
Cohen S, Johnston S, Nguyen CK, et al. A CoOxHy/β-NiOOH electrocatalyst for robust ammonia oxidation to nitrite and nitrate. Green Chem. 2023; 25(18): 7157-7165.
[61.]
Shih Y-J, Huang Y-H, Huang CP. Electrocatalytic ammonia oxidation over a nickel foam electrode: role of Ni(OH)2(s)-NiOOH(s) nanocatalysts. Electrochim Acta. 2018; 263: 261-271.
[62.]
Yao K, Cheng YF. Investigation of the electrocatalytic activity of nickel for ammonia oxidation. Mater Chem Phys. 2008; 108(2-3): 247-250.
[63.]
Hou J, Cheng Y, Pan H, Kang P. Tailored bimetallic Ni-Sn catalyst for electrochemical ammonia oxidation to dinitrogen with high selectivity. Inorg Chem. 2023; 62(9): 3986-3992.
[64.]
Allagui A, Sarfraz S, Baranova EA. NixPd1-x (x = 0.98, 0.93, and 0.58) nanostructured catalysts for ammonia electrooxidation in alkaline media. Electrochim Acta. 2013; 110: 253-259.
[65.]
Shih Y-J, Hsu C-H. Kinetics and highly selective N2 conversion of direct electrochemical ammonia oxidation in an undivided cell using NiCo oxide nanoparticle as the anode and metallic Cu/Ni foam as the cathode. Chem Eng J. 2021; 409:128024.
[66.]
Xu W, Du D, Lan R, et al. Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Appl Catal B Environ. 2018; 237: 1101-1109.
[67.]
Wang R, Liu H, Zhang K, Zhang G, Lan H, Qu J. Ni(II)/Ni(III) redox couple endows Ni foam-supported Ni2P with excellent capability for direct ammonia oxidation. Chem Eng J. 2021; 404:126795.
[68.]
Hu Z, Lu S, Tang F, et al. High-performance precious metal-free direct ammonia fuel cells endowed by Co-doped Ni4Cu1 anode catalysts. Appl Catal B Environ. 2023; 334:122856.
[69.]
Hu S, Tan Y, Feng C, Wu H, Zhang J, Mei H. Synthesis of N doped NiZnCu-layered double hydroxides with reduced graphene oxide on nickel foam as versatile electrocatalysts for hydrogen production in hybrid-water electrolysis. J Power Sources. 2020; 453:227872.
[70.]
Zhu M, Yang Y, Xi S, et al. Deciphering NH3 adsorption kinetics in ternary Ni-Cu-Fe oxyhydroxide toward efficient ammonia oxidation reaction. Small. 2021; 17(7):2005616.
[71.]
Huang J, Chen Z, Cai J, Jin Y, Wang T, Wang J. Activating copper oxide for stable electrocatalytic ammonia oxidation reaction via in-situ introducing oxygen vacancies. Nano Res. 2022; 15(7): 5987-5994.
[72.]
Johnston S, Kemp L, Turay B, Simonov AN, Suryanto BHR, MacFarlane DR. Copper-catalyzed electrosynthesis of nitrite and nitrate from ammonia: tuning the selectivity via an interplay between homogeneous and heterogeneous catalysis. ChemSusChem. 2021; 14(21): 4793-4801.
[73.]
Klinman JP. Mechanisms whereby mononuclear copper proteins functionalize organic substrates. Chem Rev. 1996; 96(7): 2541-2562.
[74.]
Zott MD, Garrido-Barros P, Peters JC. Electrocatalytic ammonia oxidation mediated by a polypyridyl iron catalyst. ACS Catal. 2019; 9(11): 10101-10108.
[75.]
Trenerry MJ, Wallen CM, Brown TR, Park SV, Berry JF. Spontaneous N2 formation by a diruthenium complex enables electrocatalytic and aerobic oxidation of ammonia. Nat Chem. 2021; 13(12): 1221-1227.
[76.]
Zott MD, Peters JC. Enhanced ammonia oxidation catalysis by a low-spin iron complex featuring cis coordination sites. J Am Chem Soc. 2021; 143(20): 7612-7616.
[77.]
Liu H-Y, Lant HMC, Troiano JL, et al. Electrocatalytic, homogeneous ammonia oxidation in water to nitrate and nitrite with a copper complex. J Am Chem Soc. 2022; 144(19): 8449-8453.
[78.]
Nakajima K, Toda H, Sakata K, Nishibayashi Y. Ruthenium-catalysed oxidative conversion of ammonia into dinitrogen. Nat Chem. 2019; 11(8): 702-709.
[79.]
Cairns EJ, Simons EL, Tevebaugh AD. Ammonia-oxygen fuel cell. Nature. 1968; 217(5130): 780-781.
[80.]
Simons EL, Cairns EJ, Surd DJ. The performance of direct ammonia fuel cells. J Electrochem Soc. 1969; 116(5): 556.
[81.]
Zhao Y, Wang T, Setzler BP, Abbasi R, Wang J, Yan Y. A high-performance gas-fed direct ammonia hydroxide exchange membrane fuel cell. ACS Energy Lett. 2021; 6(5): 1996-2002.
[82.]
Hosseini SE, Wahid MA. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sustain Energy Rev. 2016; 57: 850-866.
[83.]
Turner JA. Sustainable hydrogen production. Science. 2004; 305(5686): 972-974.
[84.]
Adli NM, Zhang H, Mukherjee S, Wu G. Review—ammonia oxidation electrocatalysis for hydrogen generation and fuel cells. J Electrochem Soc. 2018 ; 165(15): J3130-J3147.
[85.]
Cooper M, Botte GG. Hydrogen production from the electro-oxidation of ammonia catalyzed by platinum and rhodium on raney nickel substrate. J Electrochem Soc. 2006; 153(10):A1894.
[86.]
Trangwachirachai K, Rouwenhorst K, Lefferts L, Faria Albanese JA. Recent progress on ammonia cracking technologies for scalable hydrogen production. Curr Opin Green Sustainable Chem. 2024; 49:100945.
[87.]
Yoon D, Chung S, Choi M, Yang E, Lee J. 100 W-class green hydrogen production from ammonia at a dual-layer electrode containing a Pt-Ir catalyst for an alkaline electrolytic process. J Energy Chem. 2024; 93: 352-360.
[88.]
Dang K, Wu L, Liu S, et al. Cooperative oxidation of NH3 and H2O to selectively produce nitrate via a nearly barrierless N-O coupling pathway. Energy Environ Sci. 2024; 17(13): 4681-4691.
[89.]
Borodin D, Rahinov I, Galparsoro O, et al. Kinetics of NH3 desorption and diffusion on Pt: implications for the Ostwald process. J Am Chem Soc. 2021; 143(43): 18305-18316.
[90.]
Ruan C, Wang X, Wang C, et al. Selective catalytic oxidation of ammonia to nitric oxide via chemical looping. Nat Commun. 2022; 13(1): 718.
[91.]
Johnston S, Cohen S, Nguyen CK, et al. A survey of catalytic materials for ammonia electrooxidation to nitrite and nitrate. ChemSusChem. 2022; 15(20):e202200614.
[92.]
Wang Y, Yu Y, Jia R, Zhang C, Zhang B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl Sci Rev. 2019; 6(4): 730-738.
[93.]
Vu TM, Johnston S, Simondson D, et al. High-rate, high-selectivity electrochemical oxidation of ammonia to nitrite with a silver-based catalyst. ACS Catal. 2024; 14(14): 10974-10986.
[94.]
Cechanaviciute IA, Kumari B, Alfes LM, Andronescu C, Schuhmann W. Gas diffusion electrodes for electrocatalytic oxidation of gaseous ammonia: stepping over the nitrogen energy canyon. Angew Chem Int Ed. 2024:e202404348.
[95.]
Anderson N, Strader R, Davidson C. Airborne reduced nitrogen: ammonia emissions from agriculture and other sources. Environ Int. 2003; 29(2-3): 277-286.
[96.]
Zhang G, Ruan J, Du T. Recent advances on photocatalytic and electrochemical oxidation for ammonia treatment from water/wastewater. ACS EST Eng. 2021; 1(3): 310-325.
[97.]
Karri RR, Sahu JN, Chimmiri V. Critical review of abatement of ammonia from wastewater. J Mol Liq. 2018; 261: 21-31.
[98.]
He S, Huang Q, Zhang Y, Wang L, Nie Y. Investigation on direct and indirect electrochemical oxidation of ammonia over Ru-Ir/TiO2 anode. Ind Eng Chem Res. 2015; 54(5): 1447-1451.
[99.]
Shu J, Liu R, Liu Z, Qiu J, Chen H, Tao C. Simultaneous removal of ammonia nitrogen and manganese from wastewater using nitrite by electrochemical method. Environ Technol. 2017; 38(3): 370-376.
[100.]
Chen Y, Zhang G, Ji Q, Lan H, Liu H, Qu J. Visualization of electrochemically accessible sites in flow-through mode for maximizing available active area toward superior electrocatalytic ammonia oxidation. Environ Sci Technol. 2022; 56(13): 9722-9731.
[101.]
Yao Z, Lum Y, Johnston A, et al. Machine learning for a sustainable energy future. Nat Rev Mater. 2023; 8(3): 202-215.
[102.]
Ulissi ZW, Medford AJ, Bligaard T, Nørskov JK. To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat Commun. 2017; 8(1):14621.
[103.]
Chen Y, Huang Y, Cheng T, Goddard WAI. Identifying active sites for CO2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations. J Am Chem Soc. 2019; 141(29): 11651-11657.
[104.]
Dattila F, Seemakurthi RR, Zhou Y, López N. Modeling operando electrochemical CO2 reduction. Chem Rev. 2022; 122(12): 11085-11130.
[105.]
Fan L, Chen S, Zhang W, Liu Y, Chen Y, Mao X. Operando imaging in electrocatalysis: insights into microstructural materials design. Chem Asian J. 2024; 19(5):e202301054.
[106.]
Yang Y, Louisia S, Yu S, et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature. 2023; 614(7947): 262-269.
[107.]
Su DS, Zhang B, Schlögl R. Electron microscopy of solid catalysts—transforming from a challenge to a toolbox. Chem Rev. 2015; 115(8): 2818-2882.
[108.]
Atlan C, Chatelier C, Martens I, et al. Imaging the strain evolution of a platinum nanoparticle under electrochemical control. Nat Mater. 2023; 22(6): 1-8.
[109.]
Chen Y, Stelmacovich G, Mularczyk A, et al. A viewpoint on X-ray tomography imaging in electrocatalysis. ACS Catal. 2023; 13(15): 10010-10025.
[110.]
Mefford JT, Akbashev AR, Kang M, et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature. 2021; 593(7857): 67-73.
[111.]
Wang H, Dekel DR, Abruña HD. Unraveling the mechanism of ammonia electrooxidation by coupled differential electrochemical mass spectrometry and surface-enhanced infrared absorption spectroscopic studies. J Am Chem Soc. 2024; 146(23): 15926-15940.
[112.]
Timoshenko J, Anspoks A, Cintins A, Kuzmin A, Purans J, Frenkel AI. Neural network approach for characterizing structural transformations by X-ray absorption fine structure spectroscopy. Phys Rev Lett. 2018; 120(22):225502.
[113.]
Liu Z, Zhang G, Lan H, Liu H, Qu J. Optimization of a hierarchical porous-structured reactor to mitigate mass transport limitations for efficient electrocatalytic ammonia oxidation through a three-electron-transfer pathway. Environ Sci Technol. 2021; 55(18): 12596-12606.
[114.]
Xiong H, Yu P, Chen K, et al. Urea synthesis via electrocatalytic oxidative coupling of CO with NH3 on Pt. Nat Catal. 2024; 7(7): 785-795.
Funding
National Research Foundation, Singapore, and A*STAR (Agency for Science, Technology and Research) under its LCER Phase 2 Programme Hydrogen & Emerging Technologies FI, Directed Hydrogen Programme(U2305D4003); Singapore National Research Foundation Investigatorship(NRF-NRFI08-2022-0009)
PDF

Accesses

Citations

Detail

Sections
Recommended

/