Enhanced Cherenkov radiation in twisted hyperbolic Van der Waals crystals

Hao Hu, Xiao Lin, Guangwei Hu, Francisco J. Garcia-Vidal, Yu Luo

InfoScience ›› 2024, Vol. 1 ›› Issue (1) : e12024.

PDF
InfoScience ›› 2024, Vol. 1 ›› Issue (1) : e12024. DOI: 10.1002/inc2.12024
RESEARCH ARTICLE

Enhanced Cherenkov radiation in twisted hyperbolic Van der Waals crystals

Author information +
History +

Abstract

Cherenkov radiation in artificial structures experiencing strong radiation enhancements promises important applications in free-electron quantum emitters, broadband light sources, miniaturized particle detectors, etc. However, the momentum matching condition between swift electrons and emitted photons generally restricts the radiation enhancement to a particular momentum. Efficient Cherenkov radiation over a wide range of momenta is highly demanded for many applications but still remains a challenging task. To this end, we explored the interaction between swift electrons and twisted hyperbolic Van der Waals crystals and observed enhanced Cherenkov radiation at the flatband resonance frequency. We show that, at the photonic magic angle of the twisted crystals, the electron momentum, once matching with that of the flatband photon, gives rise to a maximum energy loss (corresponding to the surface phonon generation), one-order of magnitude higher than that in conventional hyperbolic materials. Such a significant enhancement is attributed to the excitation of flatband surface phonon polaritons over a broad momentum range. Our findings provide a feasible route for highly directional free-electron radiation and radiation shaping.

Keywords

free electron radiation / metamaterials / nanophotonics / Van der Waals crystals

Cite this article

Download citation ▾
Hao Hu, Xiao Lin, Guangwei Hu, Francisco J. Garcia-Vidal, Yu Luo. Enhanced Cherenkov radiation in twisted hyperbolic Van der Waals crystals. InfoScience, 2024, 1(1): e12024 https://doi.org/10.1002/inc2.12024

References

[1.]
Rivera N, Kaminer I. Light-matter interactions with photonic quasiparticles. Nat Rev Phys. 2020; 2(10): 538-561.
[2.]
Čerenkov P. Visible light from pure liquids under the impact of γ-rays. Acad Sci URSS. 1934; 2(8): 451-457.
[3.]
Ginis V, Danckaert J, Veretennicoff I, Tassin P. Controlling Cherenkov radiation with transformation-optical metamaterials. Phys Rev Lett. 2014; 113(16):167402.
[4.]
Chamberlain O, Segrè E, Wiegand C, Ypsilantis T. Observation of antiprotons. Phys Rev. 1955; 100(3): 947-950.
[5.]
Aubert J-J, Becker U, Biggs P, et al. Experimental observation of a heavy particle J. Phys Rev Lett. 1974; 33(23): 1404-1406.
[6.]
Hu H, Lin X, Luo Y. Free-electron radiation engineering via structured environments. Prog Electromagn Res. 2021; 171: 75-88.
[7.]
Yang Y, Massuda A, Roques-Carmes C, et al. Maximal spontaneous photon emission and energy loss from free electrons. Nat Phys. 2018; 14(9): 894-899.
[8.]
Xi S, Chen H, Jiang T, et al. Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Phys Rev Lett. 2009; 103(19):194801.
[9.]
Chen H, Chen M. Flipping photons backward: reversed Cherenkov radiation. Mater Today. 2011; 14(1-2): 34-41.
[10.]
Duan Z, Tang X, Wang Z, et al. Observation of the reversed Cherenkov radiation. Nat Commun. 2017; 8(1):14901.
[11.]
Hu H, Lin X, Wong LJ, et al. Surface Dyakonov-Cherenkov radiation. eLight. 2022; 2(1): 2.
[12.]
Liu S, Zhang P, Liu W, et al. Surface polariton Cherenkov light radiation source. Phys Rev Lett. 2012; 109(15):153902.
[13.]
Liu F, Xiao L, Ye Y, et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat Photonics. 2017; 11(5): 289-292.
[14.]
Adiv Y, Hu H, Tsesses S, et al. Observation of 2D Cherenkov radiation. Phys Rev X. 2023; 13(1):011002.
[15.]
Chen J, Chen R, Tay F, et al. Low-velocity-favored transition radiation. Phys Rev Lett. 2023; 131(11):113002.
[16.]
Hu H, Lin X, Liu D, Chen H, Zhang B, Luo Y. Broadband enhancement of Cherenkov radiation using dispersionless plasmons. Adv Sci. 2022; 9(26):2200538.
[17.]
Lin X, Hu H, Easo S, et al. A Brewster route to Cherenkov detectors. Nat Commun. 2021; 12(1):5554.
[18.]
Lin X, Easo S, Shen Y, et al. Controlling Cherenkov angles with resonance transition radiation. Nat Phys. 2018; 14(8): 816-821.
[19.]
Tao J, Wu L, Zheng G. Graphene surface-polariton in-plane Cherenkov radiation. Carbon. 2018; 133: 249-253.
[20.]
Wong LJ, Kaminer I, Ilic O, Joannopoulos JD, Soljačić M. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat Photonics. 2016; 10(1): 46-52.
[21.]
Zhang X, Hu M, Zhang Z, et al. High-efficiency threshold-less Cherenkov radiation generation by a graphene hyperbolic grating in the terahertz band. Carbon. 2021; 183: 225-231.
[22.]
Zhang ZW, Du CH, Zhu JF, et al. Free-electron-driven frequency comb. Laser Photon Rev. 2023; 17(6):2200886.
[23.]
Wong LWW, Shi X, Karnieli A, et al. Free-electron crystals for enhanced X-ray radiation. Light Sci Appl. 2024; 13(1): 29.
[24.]
Gong Z, Chen J, Chen R, et al. Interfacial Cherenkov radiation from ultralow-energy electrons. Proc Natl Acad Sci USA. 2023; 120(38):e2306601120.
[25.]
Glaser AK, Zhang R, Andreozzi JM, Gladstone DJ, Pogue BW. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications. Phys Med Biol. 2015; 60(17): 6701-6718.
[26.]
Jarvis LA, Zhang R, Gladstone DJ, et al. Cherenkov video imaging allows for the first visualization of radiation therapy in real time. Int J Radiat Oncol Biol Phys. 2014; 89(3): 615-622.
[27.]
Yang Y, Roques-Carmes C, Kooi SE, et al. Photonic flatband resonances for free-electron radiation. Nature. 2023; 613(7942): 42-47.
[28.]
Hu G, Krasnok A, Mazor Y, Qiu C-W, Alù A. Moiré hyperbolic metasurfaces. Nano Lett. 2020; 20(5): 3217-3224.
[29.]
Hu G, Ou Q, Si G, et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature. 2020; 582(7811): 209-213.
[30.]
Chen M, Lin X, Dinh TH, et al. Configurable phonon polaritons in twisted α-MoO3. Nat Mater. 2020; 19(12): 1307-1311.
[31.]
Hu G, Zheng C, Ni J, Qiu C-W, Alù A. Enhanced light-matter interactions at photonic magic-angle topological transitions. Appl Phys Lett. 2021; 118(21):211101.
[32.]
Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature. 2018; 556(7699): 43-50.
[33.]
Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature. 2018; 556(7699): 80-84.
[34.]
Zheng Z, Xu N, Oscurato SL, et al. A mid-infrared biaxial hyperbolic Van Der Waals crystal. Sci Adv. 2019; 5(5):eaav8690.
[35.]
Staelin DH, Morgenthaler AW, Kong JA. Electromagnetic Waves. Pearson Education India; 1994.
[36.]
Hou S, Hu H, Liu Z, Xing W, Zhang J. Broadband transmissive polarization rotator by gradiently twisted α-MoO3. Appl Phys Lett. 2024; 124(11):111107.
[37.]
Zhang Q, Hu G, Ma W, et al. Interface nano-optics with Van Der Waals polaritons. Nature. 2021; 597(7875): 187-195.
[38.]
Lee D, So S, Hu G, et al. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight. 2022; 2: 1-23.
[39.]
Dai S, Fei Z, Ma Q, et al. Tunable phonon polaritons in atomically thin Van Der Waals crystals of boron nitride. Science. 2014; 343(6175): 1125-1129.
[40.]
Taboada-Gutiérrez J, Álvarez-Pérez G, Duan J, et al. Broad spectral tuning of ultra-low-loss polaritons in a Van Der Waals crystal by intercalation. Nat Mater. 2020; 19(9): 964-968.
[41.]
Sternbach A, Chae S, Latini S, et al. Programmable hyperbolic polaritons in Van Der Waals semiconductors. Science. 2021; 371(6529): 617-620.
[42.]
Zheng C, Hu G, Liu X, Kong X, Wang L, Qiu C-W. Molding broadband dispersion in twisted trilayer hyperbolic polaritonic surfaces. ACS Nano. 2022; 16(8): 13241-13250.
[43.]
Zeng Y, Ou Q, Liu L, et al. Tailoring topological transitions of anisotropic polaritons by interface engineering in biaxial crystals. Nano Lett. 2022; 22(10): 4260-4268.
Funding
Distinguished Professor Fund of Jiangsu Province(1004-YQR23064); Distinguished Professor Fund of Jiangsu Province(1004-YQR24010); Selected Chinese Government Talent-Recruitment Programs of Nanjing(1004-YQR23122); Startup Grant of Nanjing University of Aeronautics and Astronautics(1004-YQR23031); National Natural Science Fund for Excellent Young Scientists Fund Program of China; National Natural Science Foundation of China(62175212); Zhejiang Provincial Natural Science Fund Key Project(LZ23F050003); Fundamental Research Funds for the Central Universities(226-2024-00022); Fundamental Research Funds for the Central Universities(NS2024022)
PDF

Accesses

Citations

Detail

Sections
Recommended

/