Wafer-scale single-crystal two-dimensional materials for integrated optoelectronics

Xin Feng, Yiran Ma, Tian Huang, Shenghong Liu, Lixin Liu, Erjuan Guo, Kailang Liu, Yuan Li, Xing Zhou, Huiqiao Li, Tianyou Zhai

InfoScience ›› 2024, Vol. 1 ›› Issue (1) : e12015.

PDF
InfoScience ›› 2024, Vol. 1 ›› Issue (1) : e12015. DOI: 10.1002/inc2.12015
REVIEW

Wafer-scale single-crystal two-dimensional materials for integrated optoelectronics

Author information +
History +

Abstract

Since the pioneering research on graphene, two-dimensional (2D) materials have been considered as the most promising candidates to continue advancing Moore's Law, and an emerging material family, which has bred a lot of novel functional applications beyond the Si-based integrated circuit. Unfortunately, abundant challenges in the synthesis of wafer-scale single-crystal (WSSC) 2D materials and their on-chip integration technology severely hinder their commercialization road. Over the past few years, significant technique breakthroughs of WSSC 2D materials have been increasingly achieved, accordingly a comprehensive review and critical evaluation of these new advances are pressingly required. In this review article, the outstanding research progress on the synthesis of WSSC 2D materials and 2D material-based on-chip integration technology, including 2D materials integration, nanopatterning, electrode integration, and dielectric integration, are summarized in detail. Then, the major application prospect of different types of WSSC 2D materials in optoelectronics is discussed. Finally, a critical assessment of these advancements is given, as well as the potential challenges and opportunities in the foreseeable future.

Keywords

2D materials / Moore's law / on-chip integration / optoelectronic devices / wafer-scale singlecrystal

Cite this article

Download citation ▾
Xin Feng, Yiran Ma, Tian Huang, Shenghong Liu, Lixin Liu, Erjuan Guo, Kailang Liu, Yuan Li, Xing Zhou, Huiqiao Li, Tianyou Zhai. Wafer-scale single-crystal two-dimensional materials for integrated optoelectronics. InfoScience, 2024, 1(1): e12015 https://doi.org/10.1002/inc2.12015

References

[1.]
Yang H, Valenzuela SO, Chshiev M, et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature. 2022; 606(7915): 663-673.
[2.]
Wang S, Liu X, Xu M, Liu L, Yang D, Zhou P. Two-dimensional devices and integration towards the silicon lines. Nat Mater. 2022; 21(11): 1225-1239.
[3.]
Zhu K, Wen C, Aljarb AA, et al. The development of integrated circuits based on two-dimensional materials. Nat Electron. 2021; 4(11): 775-785.
[4.]
Xu X, Pan Y, Liu S, et al. Seeded 2D epitaxy of large-area single-crystal films of the Van Der Waals semiconductor 2H MoTe2. Science. 2021; 372(6538): 195-200.
[5.]
Wang S, Liu X, Zhou P. The road for 2D semiconductors in the silicon age (Adv. Mater. 48/2022). Adv Mater. 2022; 34(48):2106886.
[6.]
Liu Y, Duan X, Shin HJ, Park S, Huang Y, Duan X. Promises and prospects of two-dimensional transistors. Nature. 2021; 591(7848): 43-53.
[7.]
Li L, Han W, Pi L, et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat. 2019; 1: 54-73.
[8.]
Liu L, Zhai T. Cover image. InfoMat. 2020; 3(1): 3.
[9.]
Song H, Zhao Y, Turner E, et al. Capturing 2D Van Der Waals magnets with high probability for experimental demonstration from materials science literature. InfoMat. 2023; 5(4):e12397.
[10.]
Wang F, Yang S, Wu J, et al. Emerging two-dimensional bismuth oxychalcogenides for electronics and optoelectronics. InfoMat. 2021; 3(11): 1251-1271.
[11.]
Liu Y, Yakobson BI. Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett. 2010; 10(6): 2178-2183.
[12.]
Mennel L, Symonowicz J, Wachter S, Polyushkin DK, Molina-Mendoza AJ, Mueller T. Ultrafast machine vision with 2D material neural network image sensors. Nature. 2020; 579(7797): 62-66.
[13.]
Choi SH, Yun SJ, Won YS, et al. Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat Commun. 2022; 13(1):1484.
[14.]
Hwangbo S, Hu L, Hoang AT, Choi JY, Ahn JH. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat Nanotechnol. 2022; 17(5): 500-506.
[15.]
Chen X, Xie Y, Sheng Y, et al. Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning. Nat Commun. 2021; 12(1):5953.
[16.]
Akinwande D, Huyghebaert C, Wang CH, et al. Graphene and two-dimensional materials for silicon technology. Nature. 2019; 573(7775): 507-518.
[17.]
Liu Y, Guo J, Zhu E, et al. Approaching the Schottky-Mott limit in Van Der Waals metal-semiconductor junctions. Nature. 2018; 557(7707): 696-700.
[18.]
Li W, Zhou J, Cai S, et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat Electron. 2019; 2(12): 563-571.
[19.]
Yang S, Liu K, Xu Y, Liu L, Li H, Zhai T. Gate dielectrics integration for 2D electronics: challenges, advances, and outlook. Adv Mater. 2022; 35(18):e2207901.
[20.]
Li J, Chen M, Samad A, et al. Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nat Mater. 2022; 21(7): 740-747.
[21.]
Chen TA, Chuu CP, Tseng CC, et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature. 2020; 579(7798): 219-223.
[22.]
Wang J, Xu X, Cheng T, et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat Nanotechnol. 2021; 17(1): 33-38.
[23.]
Vlassiouk IV, Stehle Y, Pudasaini PR, et al. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat Mater. 2018; 17(4): 318-322.
[24.]
Kang K, Lee KH, Han Y, et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature. 2017; 550(7675): 229-233.
[25.]
Kwon G, Choi Y-H, Lee H, et al. Interaction- and defect-free Van Der Waals contacts between metals and two-dimensional semiconductors. Nat Electron. 2022; 5(4): 241-247.
[26.]
Liu K, Jin B, Han W, et al. A wafer-scale Van Der Waals dielectric made from an inorganic molecular crystal film. Nat Electron. 2021; 4(12): 906-913.
[27.]
Huang JK, Wan Y, Shi J, et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature. 2022; 605(7909): 262-267.
[28.]
Yang AJ, Han K, Huang K, et al. Van Der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat Electron. 2022; 5(4): 233-240.
[29.]
Zhao Y, Song Y, Hu Z, et al. Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nat Commun. 2022; 13(1):4409.
[30.]
Wei Z, Liao M, Guo Y, et al. Scratching lithography for wafer-scale MoS2 monolayers. 2D Mater. 2020; 7(4):045028.
[31.]
Shen PC, Su C, Lin Y, et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature. 2021; 593(7858): 211-217.
[32.]
Zhang P, Wang X, Jiang H, et al. Flux-assisted growth of atomically thin materials. Nat Synth. 2022; 1(11): 864-872.
[33.]
Chen F, Cao D, Li J, et al. Solution-processed thickness engineering of tellurene for field-effect transistors and polarized infrared photodetectors. Front Chem. 2022; 10:1046010.
[34.]
Yu H, Liao Q, Kang Z, et al. Atomic-thin ZnO sheet for visible-blind ultraviolet photodetection. Small. 2020; 16(47):e2005520.
[35.]
Zhou D, Li H, Si N, Li H, Fuchs H, Niu T. Epitaxial growth of main group monoelemental 2D materials. Adv Funct Mater. 2020; 31(6):2006997.
[36.]
Dong J, Zhang L, Dai X, Ding F. The epitaxy of 2D materials growth. Nat Commun. 2020; 11(1):5862.
[37.]
Xu X, Zhang Z, Dong J, et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci Bull. 2017; 62(15): 1074-1080.
[38.]
Chen Z, Xie C, Wang W, et al. Direct growth of wafer-scale highly oriented graphene on sapphire. Sci Adv. 2021; 7(47):eabk0115.
[39.]
Wang L, Xu X, Zhang L, et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature. 2019; 570(7759): 91-95.
[40.]
Nguyen VL, Shin BG, Duong DL, et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv Mater. 2015; 27(8): 1376-1382.
[41.]
Chubarov M, Choudhury TH, Hickey DR, et al. Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano. 2021; 15(2): 2532-2541.
[42.]
Lee JH, Lee EK, Joo WJ, et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science. 2014; 344(6181): 286-289.
[43.]
Deng B, Pang Z, Chen S, et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano. 2017; 11(12): 12337-12345.
[44.]
Lee JS, Choi SH, Yun SJ, et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science. 2018; 362(6416): 817-821.
[45.]
Zhang L, Dong J, Ding F. Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem Rev. 2021; 121(11): 6321-6372.
[46.]
Gronborg SS, Ulstrup S, Bianchi M, et al. Synthesis of epitaxial single-layer MoS2 on Au(111). Langmuir. 2015; 31(35): 9700-9706.
[47.]
Chen L, Liu B, Ge M, Ma Y, Abbas AN, Zhou C. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano. 2015; 9(8): 8368-8375.
[48.]
Yang P, Zhang S, Pan S, et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano. 2020; 14(4): 5036-5045.
[49.]
Li T, Guo W, Ma L, et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat Nanotechnol. 2021; 16(11): 1201-1207.
[50.]
Emtsev KV, Bostwick A, Horn K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater. 2009; 8(3): 203-207.
[51.]
Norimatsu W, Kusunoki M. Epitaxial graphene on SiC{0001}: advances and perspectives. Phys Chem Chem Phys. 2014; 16(8):3501.
[52.]
Norimatsu W, Kusunoki M. Transitional structures of the interface between graphene and 6H-SiC (0001). Chem Phys Lett. 2009; 468(1-3): 52-56.
[53.]
Wang Y, Li L, Yao W, et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015; 15(6): 4013-4018.
[54.]
Xu X, Wang Z, Lopatin S, Quevedo-Lopez MA, Alshareef HN Wafer scale quasi single crystalline MoS 2 realized by epitaxial phase conversion. 2D Mater. 2018; 6(1):015030.
[55.]
Xu X, Smajic J, Li KH, et al. Lattice orientation heredity in the transformation of 2D epitaxial films. Adv Mater. 2021; 34(4):2105190.
[56.]
Pallecchi E, Lafont F, Cavaliere V, et al. High electron mobility in epitaxial graphene on 4H-SiC(0001) via post-growth annealing under hydrogen. Sci Rep. 2014; 4(1):4558.
[57.]
Hass J, Feng R, Li T, et al. Highly ordered graphene for two dimensional electronics. Appl Phys Lett. 2006; 89(14):143106.
[58.]
de Heer WA, Berger C, Ruan M, et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc Natl Acad Sci USA. 2011; 108(41): 16900-16905.
[59.]
Ouerghi A, Silly MG, Marangolo M, et al. Large-area and high-quality epitaxial graphene on off-Axis SiC wafers. ACS Nano. 2012; 6(7): 6075-6082.
[60.]
Kruskopf M, Pakdehi DM, Pierz K, et al. Comeback of epitaxial graphene for electronics: large-area growth of bilayer-free graphene on SiC. 2D Mater. 2016; 3(4):041002.
[61.]
Momeni Pakdehi D, Pierz K, Wundrack S, et al. Homogeneous large-area quasi-free-standing monolayer and bilayer graphene on SiC. ACS Appl Nano Mater. 2019; 2: 844-852.
[62.]
Yang P, Wang D, Zhao X, et al. Epitaxial growth of inch-scale single-crystal transition metal dichalcogenides through the patching of unidirectionally orientated ribbons. Nat Commun. 2022; 13(1):3238.
[63.]
Wu T, Zhang X, Yuan Q, et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat Mater. 2016; 15(1): 43-47.
[64.]
Li J, Hu Z, Yi Y, et al. Hexagonal boron nitride growth on Cu-Si alloy: morphologies and large domains. Small. 2019; 15(14):1805188.
[65.]
Babenko V, Fan Y, Veigang-Radulescu V-P, et al. Oxidising and carburising catalyst conditioning for the controlled growth and transfer of large crystal monolayer hexagonal boron nitride. 2D Mater. 2020; 7(2):024005.
[66.]
Chang MC, Ho PH, Tseng MF, et al. Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method. Nat Commun. 2020; 11(1):3682.
[67.]
Chen J, Zhao X, Tan SJ, et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J Am Chem Soc. 2017; 139(3): 1073-1076.
[68.]
Zhang Z, Chen P, Yang X, et al. Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl Sci Rev. 2020; 7(4): 737-744.
[69.]
Yang T, Zheng B, Wang Z, et al. Van Der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat Commun. 2017; 8(1):1906.
[70.]
Xu X, Chen S, Liu S, et al. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation. J Am Chem Soc. 2019; 141(5): 2128-2134.
[71.]
Shang SL, Lindwall G, Wang Y, Redwing JM, Anderson T, Liu ZK. Lateral versus vertical growth of two-dimensional layered transition-metal dichalcogenides: thermodynamic insight into MoS2. Nano Lett. 2016; 16(9): 5742-5750.
[72.]
Ye H, Zhou J, Er D, et al. Toward a mechanistic understanding of vertical growth of Van Der Waals stacked 2D materials: a multiscale model and experiments. ACS Nano. 2017; 11(12): 12780-12788.
[73.]
Liu L, Li T, Ma L, et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature. 2022; 605(7908): 69-75.
[74.]
Chen W, Zhao J, Zhang J, et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J Am Chem Soc. 2015; 137(50): 15632-15635.
[75.]
Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides. Nature. 2018; 556(7701): 355-359.
[76.]
Yakes MK, Gunlycke D, Tedesco JL, et al. Conductance anisotropy in epitaxial graphene sheets generated by substrate interactions. Nano Lett. 2010; 10(5): 1559-1562.
[77.]
Wang F, Pei K, Li Y, Li H, Zhai T. 2D homojunctions for electronics and optoelectronics. Adv Mater. 2021; 33(15):2005303.
[78.]
Schneider GF, Calado VE, Zandbergen H, Vandersypen LM, Dekker C Wedging transfer of nanostructures. Nano Lett. 2010; 10(5): 1912-1916.
[79.]
Park JH, Choi SH, Chae WU, et al. Effective characterization of polymer residues on two-dimensional materials by Raman spectroscopy. Nanotechnology. 2015; 26(48):485701.
[80.]
Gao L, Ren W, Xu H, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun. 2012; 3(1): 699.
[81.]
Lin YC, Jin C, Lee JC, Jen SF, Suenaga K, Chiu PW. Clean transfer of graphene for isolation and suspension. ACS Nano. 2011; 5(3): 2362-2368.
[82.]
Zhang T, Fujisawa K, Granzier-Nakajima T, et al. Clean transfer of 2D transition metal dichalcogenides using cellulose acetate for atomic resolution characterizations. ACS Appl Nano Mater. 2019; 2(8): 5320-5328.
[83.]
Wang Y, Zheng Y, Xu X, et al. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano. 2011; 5(12): 9927-9933.
[84.]
Yun SJ, Chae SH, Kim H, et al. Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano. 2015; 9(5): 5510-5519.
[85.]
Shim J, Bae S-H, Kong W, et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science. 2018; 362(6415): 665-670.
[86.]
Li J, Yang X, Liu Y, et al. General synthesis of two-dimensional Van Der Waals heterostructure arrays. Nature. 2020; 579(7799): 368-374.
[87.]
Zhang Z, Huang Z, Li J, et al. Endoepitaxial growth of monolayer mosaic heterostructures. Nat Nanotechnol. 2022; 17(5): 493-499.
[88.]
Wang Z, Xia H, Wang P, et al. Controllable doping in 2D layered materials. Adv Mater. 2021; 33(48):2104942.
[89.]
Murai Y, Zhang S, Hotta T, et al. Versatile post-doping toward two-dimensional semiconductors. ACS Nano. 2021; 15(12): 19225-19232.
[90.]
Li Z, Li D, Wang H, et al. Universal p-type doping via lewis acid for 2D transition-metal dichalcogenides. ACS Nano. 2022; 16(3): 4884-4891.
[91.]
Gao Y, Liu Z, Sun D-M, et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat Commun. 2015; 6(1):8569.
[92.]
Gurarslan A, Yu Y, Su L, et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano. 2014; 8(11): 11522-11528.
[93.]
Cao Y, Wang X, Lin X, et al. Movable-type transfer and stacking of Van Der Waals heterostructures for spintronics. IEEE Access. 2020; 8: 70488-70495.
[94.]
Lin Z, Zhao Y, Zhou C, et al. Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci Rep. 2015; 5(1):18596.
[95.]
Yang SJ, Jung JH, Lee E, et al. Wafer-scale programmed assembly of one-atom-thick crystals. Nano Lett. 2022; 22(4): 1518-1524.
[96.]
Poddar PK, Zhong Y, Mannix AJ, et al. Resist-free lithography for monolayer transition metal dichalcogenides. Nano Lett. 2022; 22(2): 726-732.
[97.]
Mannix AJ, Ye A, Sung SH, et al. Robotic four-dimensional pixel assembly of Van Der Waals solids. Nat Nanotechnol. 2022; 17(4): 361-366.
[98.]
Cho S, Kim S, Kim JH, et al. Phase patterning for ohmic homojunction contact in MoTe2. Science. 2015; 349(6248): 625-628.
[99.]
Kim Y, Bark H, Kang B, Lee C. Wafer-scale substitutional doping of monolayer MoS2 films for high-performance optoelectronic devices. ACS Appl Mater Interfaces. 2019; 11(13): 12613-12621.
[100.]
Zhong F, Ye J, He T, et al. Substitutionally doped MoSe2 for high-performance electronics and optoelectronics. Small. 2021; 17(47):2102855.
[101.]
Tosun M, Chan L, Amani M, et al. Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano. 2016; 10(7): 6853-6860.
[102.]
Seo S-Y, Moon G, Okello OFN, et al. Reconfigurable photo-induced doping of two-dimensional Van Der Waals semiconductors using different photon energies. Nat Electron. 2020; 4(1): 38-44.
[103.]
Wang M, Wang W, Zhang Y, et al. Controllable n-type doping in WSe2 monolayer via construction of anion vacancies. Chin Chem Lett. 2021; 32(10): 3118-3122.
[104.]
Shan Y, Yin Z, Zhu J, et al. Few-layered MoS2 based vertical Van Der Waals p-n homojunction by highly-efficient N2 plasma implantation. Adv Electron Mater. 2022; 8(10):2200299.
[105.]
Yoon M, Lee J. Charge transfer doping with an organic layer to achieve a high-performance p-type WSe2 transistor. J Mater Chem C. 2021; 9(30): 9592-9598.
[106.]
Lee EK, Abdullah H, Torricelli F, et al. Boosting the optoelectronic properties of molybdenum diselenide by combining phase transition engineering with organic cationic dye doping. ACS Nano. 2021; 15(11): 17769-17779.
[107.]
Yin S, Sun J, Sun Y, et al. Basic logic operations achieved in a single 2D WSe2Transistor by surface-charge-transfer doping. ACS Appl Electron Mater. 2021; 3(11): 5059-5065.
[108.]
Sun J, Wang Y, Guo S, et al. High-performance optoelectronics: lateral 2D WSe2 p-n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics (Adv. Mater. 9/2020). Adv Mater. 2020; 32(9):1906499.
[109.]
Wu D, Xu Y, Zhou H, et al. Ultrasensitive, flexible perovskite nanowire photodetectors with long-term stability exceeding 5000 h. InfoMat. 2022; 4(9):e12320.
[110.]
Li Z, Li D, Wang H, et al. Intercalation strategy in 2D materials for electronics and optoelectronics. Small Methods. 2021; 5(9):2100567.
[111.]
Kappera R, Voiry D, Yalcin SE, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater. 2014; 13(12): 1128-1134.
[112.]
Gong Y, Yuan H, Wu CL, et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat Nanotechnol. 2018; 13(4): 294-299.
[113.]
Kim J, Park H, Yoo S, Im YH, Kang K, Kim J. Defect-engineered n-doping of WSe2 via argon plasma treatment and its application in field-effect transistors. Adv Mater Interfac. 2021; 8(14):2100718.
[114.]
Lu J, Guo Z, Wang W, et al. Lateral monolayer MoS2 homojunction devices prepared by nitrogen plasma doping. Nanotechnology. 2021; 32(1):015701.
[115.]
Wang S, Zeng X, Zhou Y, et al. High-performance MoS2 complementary inverter prepared by oxygen plasma doping. ACS Appl Electron Mater. 2022; 4(3): 955-963.
[116.]
Shin JC, Kim YH, Watanabe K, Taniguchi T, Lee CH, Lee GH. Band structure engineering of WSe2 homo-junction interfaces via thickness control (Adv. Mater. Interfaces 4/2022). Adv Mater Interfac. 2022; 9(4):2101763.
[117.]
Feng X, Huang X, Chen L, Tan WC, Wang L, Ang K-W. High mobility anisotropic black phosphorus nanoribbon field-effect transistor. Adv Funct Mater. 2018; 28:1801524.
[118.]
Zhao P, Wang R, Lien DH, et al. Monolayer semiconductors: scanning probe lithography patterning of monolayer semiconductors and application in quantifying edge recombination (Adv. Mater. 48/2019). Adv Mater. 2019; 31(48):1900136.
[119.]
Ryu YK, Dago AI, He Y, et al. Sub-10 nm patterning of few-layer MoS2 and MoSe2 nanoelectronic devices by oxidation scanning probe lithography. Appl Surf Sci. 2021; 539:148231.
[120.]
Castellanos-Gomez A, Barkelid M, Goossens AM, Calado VE, van der Zant HS, Steele GA. Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 2012; 12(6): 3187-3192.
[121.]
Munkhbat B, Yankovich AB, Baranov DG, Verre R, Olsson E, Shegai TO. Transition metal dichalcogenide metamaterials with atomic precision. Nat Commun. 2020; 11(1):4604.
[122.]
Danielsen DR, Lyksborg-Andersen A, Nielsen KES, et al. Super-resolution nanolithography of two-dimensional materials by anisotropic etching. ACS Appl Mater Interfaces. 2021; 13(35): 41886-41894.
[123.]
Sun H, Dong J, Liu F, Ding F. Etching of two-dimensional materials. Mater Today. 2021; 42: 192-213.
[124.]
Wei W, Deokar G, Belhaj M, et al. Fabrication and characterization of CVD-grown graphene based field-effect Transistor. In: 2014 44th European Microwave Conference; 2014: 367-370.
[125.]
Chen X, Lu X, Deng B, et al. Widely tunable black phosphorus mid-infrared photodetector. Nat Commun. 2017; 8(1):1672.
[126.]
Conti S, Pimpolari L, Calabrese G, et al. Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat Commun. 2020; 11(1):3566.
[127.]
Huang Y, Wu J, Xu X, et al. An innovative way of etching MoS2: characterization and mechanistic investigation. Nano Res. 2013; 6(3): 200-207.
[128.]
Liu Y, Nan H, Wu X, et al. Layer-by-layer thinning of MoS2 by plasma. ACS Nano. 2013; 7(5): 4202-4209.
[129.]
Pak Y, Kim Y, Lim N, et al. Scalable integration of periodically aligned 2D-MoS2 nanoribbon array. Apl Mater. 2018; 6(7):076102.
[130.]
Dathbun A, Kim Y, Choi Y, et al. Selectively metallized 2D materials for simple logic devices. ACS Appl Mater Interfaces. 2019; 11(20): 18571-18579.
[131.]
Nam H, Wi S, Rokni H, et al. MoS2 transistors fabricated via plasma-assisted nanoprinting of few-layer MoS2 flakes into large-area arrays. ACS Nano. 2013; 7: 5870-5881.
[132.]
Li Y, Moy EC, Murthy AA, et al. Large-scale fabrication of MoS2 ribbons and their light-induced electronic/thermal properties: dichotomies in the structural and defect engineering. Adv Funct Mater. 2018; 28(13):1704863.
[133.]
Zhang R, Drysdale D, Koutsos V, Cheung R. Controlled layer thinning and p-type doping of WSe2 by vapor XeF2. Adv Funct Mater. 2017; 27(41):1702455.
[134.]
Cupo A, Masih Das P, Chien CC, et al. Periodic arrays of phosphorene nanopores as antidot lattices with tunable properties. ACS Nano. 2017; 11(7): 7494-7507.
[135.]
Choi A, Hoang AT, Ngoc Van TT, et al. Residue-free photolithographic patterning of graphene. Chem Eng J. 2022; 429:132504.
[136.]
Zhang H, Guo X, Niu W, et al. Multilayer Si shadow mask processing of wafer-scale MoS2 devices. 2D Mater. 2020; 7(2):025019.
[137.]
Hong Y, Zhao D, Wang J, et al. Solvent-free nanofabrication based on ice-assisted electron-beam lithography. Nano Lett. 2020; 20(12): 8841-8846.
[138.]
Liu X, Chen KS, Wells SA, et al. Scanning probe nanopatterning and layer-by-layer thinning of black phosphorus. Adv Mater. 2017; 29(1):1604121.
[139.]
Ryu Cho YK, Rawlings CD, Wolf H, et al. Sub-10 nanometer feature size in silicon using thermal scanning probe lithography. ACS Nano. 2017; 11(12): 11890-11897.
[140.]
Fernandes TFD, de Gadelha A, Barboza APM, et al. Robust nanofabrication of monolayer MoS2 islands with strong photoluminescence enhancement via local anodic oxidation. 2D Mater. 2018; 5(2):025018.
[141.]
Borodin BR, Benimetskiy FA, Alekseev PA. Study of local anodic oxidation regimes in MoSe2. Nanotechnology. 2021; 32(15):155304.
[142.]
Dago AI, Ryu YK, Garcia R. Sub-20 nm patterning of thin layer WSe2 by scanning probe lithography. Appl Phys Lett. 2016; 109(16):163103.
[143.]
Garcia R, Knoll AW, Riedo E. Advanced scanning probe lithography. Nat Nanotechnol. 2014; 9(8): 577-587.
[144.]
Mirkin CA. The power of the pen: development of massively parallel Dip-Pen nanolithography. ACS Nano. 2007; 1(2): 79-83.
[145.]
Han GH, Chae SJ, Kim ES, et al. Laser thinning for monolayer graphene formation: heat sink and interference effect. ACS Nano. 2011; 5(1): 263-268.
[146.]
Sahin R, Simsek E, Akturk S. Nanoscale patterning of graphene through femtosecond laser ablation. Appl Phys Lett. 2014; 104(5):053118.
[147.]
Yang G, Gu Y, Zhang X, Ding Y, Hua B, Gu X. Fabrication of monolayer MoS2 nanogratings via single-pulse nanosecond laser interference lithography. Mater Lett. 2020; 262:127171.
[148.]
Nagareddy VK, Octon TJ, Townsend NJ, Russo S, Craciun MF, Wright CD. Humidity-controlled ultralow power layer-by-layer thinning, nanopatterning and bandgap engineering of MoTe2. Adv Funct Mater. 2018; 28(52):1804434.
[149.]
Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010; 132(15):154104.
[150.]
Hu D, Li H, Zhu Y, et al. Ultra-sensitive nanometric flat laser prints for binocular stereoscopic image. Nat Commun. 2021; 12(1):1154.
[151.]
Chen R-S, Ding G, Zhou Y, Han S-T. Fermi-level depinning of 2D transition metal dichalcogenide transistors. J Mater Chem C. 2021; 9(35): 11407-11427.
[152.]
Das S, Chen HY, Penumatcha AV, Appenzeller J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013; 13(1): 100-105.
[153.]
Kim C, Moon I, Lee D, et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano. 2017; 11(2): 1588-1596.
[154.]
Bampoulis P, van Bremen R, Yao Q, Poelsema B, Zandvliet HJW, Sotthewes K. Defect dominated charge transport and Fermi level pinning in MoS2/metal contacts. ACS Appl Mater Interfaces. 2017; 9(22): 19278-19286.
[155.]
Guo Y, Liu D, Robertson J. 3D behavior of Schottky barriers of 2D transition-metal dichalcogenides. ACS Appl Mater Interfaces. 2015; 7(46): 25709-25715.
[156.]
Gong C, Colombo L, Wallace RM, Cho K. The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett. 2014; 14(4): 1714-1720.
[157.]
Liu G, Tian Z, Yang Z, et al. Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat Electron. 2022; 5: 275-280.
[158.]
Yue D, Kim C, Lee KY, Yoo WJ. Ohmic contact in 2D semiconductors via the formation of a benzyl viologen interlayer. Adv Funct Mater. 2019; 29(7):1807338.
[159.]
Duran Retamal JR, Periyanagounder D, Ke JJ, Tsai ML, He JH. Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides. Chem Sci. 2018; 9(40): 7727-7745.
[160.]
Kong L, Zhang X, Tao Q, et al. Doping-free complementary WSe2 circuit via Van Der Waals metal integration. Nat Commun. 2020; 11(1):1866.
[161.]
Chen JR, Odenthal PM, Swartz AG, et al. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 2013; 13(7): 3106-3110.
[162.]
Dankert A, Langouche L, Kamalakar MV, Dash SP. High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts. ACS Nano. 2014; 8(1): 476-482.
[163.]
Jang J, Kim Y, Chee SS, et al. Clean interface contact using a ZnO interlayer for low-contact-resistance MoS2 transistors. ACS Appl Mater Interfaces. 2020; 12(4): 5031-5039.
[164.]
Lee S, Tang A, Aloni S, Wong HS. Statistical study on the Schottky barrier reduction of tunneling contacts to CVD synthesized MoS2. Nano Lett. 2016; 16(1): 276-281.
[165.]
Liu K, Luo P, Han W, et al. Approaching ohmic contact to two-dimensional semiconductors. Sci Bull. 2019; 64(19): 1426-1435.
[166.]
Kim GS, Kim SH, Park J, Han KH, Kim J, Yu HY. Schottky barrier height engineering for electrical contacts of multilayered MoS2 transistors with reduction of metal-induced gap states. ACS Nano. 2018; 12(6): 6292-6300.
[167.]
Huang B, Zheng M, Zhao Y, Wu J, Thong JTL. Atomic layer deposition of high-quality Al2O3 thin films on MoS2 with water plasma treatment. ACS Appl Mater Interfaces. 2019; 11(38): 35438-35443.
[168.]
Chee SS, Seo D, Kim H, et al. Lowering the Schottky barrier height by graphene/Ag electrodes for high-mobility MoS2 field-effect transistors. Adv Mater. 2019; 31(2):1804422.
[169.]
Phan NAN, Noh H, Kim J, et al. Enhanced performance of WS2 field-effect transistor through mono and bilayer h-BN tunneling contacts. Small. 2022; 18(13):2105753.
[170.]
Shin HG, Yoon HS, Kim JS, et al. Vertical and in-plane current devices using NbS2/n-MoS2 Van Der Waals Schottky junction and graphene contact. Nano Lett. 2018; 18(3): 1937-1945.
[171.]
Lee CS, Oh SJ, Heo H, et al. Epitaxial Van Der Waals contacts between transition-metal dichalcogenide monolayer polymorphs. Nano Lett. 2019; 19(3): 1814-1820.
[172.]
Farmanbar M, Brocks G. Ohmic contacts to 2D semiconductors through Van Der Waals bonding. Adv Electron Mater. 2016; 2(4):1500405.
[173.]
Andrews K, Bowman A, Rijal U, Chen PY, Zhou Z. Improved contacts and device performance in MoS2 transistors using a 2D semiconductor interlayer. ACS Nano. 2020; 14(5): 6232-6241.
[174.]
Liu Y, Stradins P, Wei SH. Van Der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci Adv. 2016; 2(4):1600069.
[175.]
Wang J, Yao Q, Huang CW, et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv Mater. 2016; 28(37): 8302-8308.
[176.]
Bokdam M, Brocks G, Katsnelson MI, Kelly PJ. Schottky barriers at hexagonal boron nitride/metal interfaces: a first-principles study. Phys Rev B. 2014; 90(8):085415.
[177.]
Zheng Y, Gao J, Han C, Chen W. Ohmic contact engineering for two-dimensional materials. Cell Rep. Phys. Sci. 2021; 2(1):100298.
[178.]
Liu X, Qu D, Ryu J, et al. P-type polar transition of chemically doped multilayer MoS2 transistor. Adv Mater. 2016; 28(12): 2345-2351.
[179.]
Ngo TD, Lee M, Yang Z, Ali F, Moon I, Yoo WJ. Control of the Schottky barrier and contact resistance at metal-WSe2 interfaces by polymeric doping. Adv Electron Mater. 2020; 6(10):2000616.
[180.]
Yu H, Gupta S, Kutana A, Yakobson BI. Dimensionality-reduced Fermi level pinning in coplanar 2D heterojunctions. J Phys Chem Lett. 2021; 12(17): 4299-4305.
[181.]
Liu S, Li J, Shi B, et al. Gate-tunable interfacial properties of in-plane ML MX2 1T′-2H heterojunctions. J Mater Chem C. 2018; 6(21): 5651-5661.
[182.]
Voiry D, Yamaguchi H, Li J, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater. 2013; 12(9): 850-855.
[183.]
Ambrosi A, Sofer Z, Pumera M 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem Commun. 2015; 51(40): 8450-8453.
[184.]
Lei B, Pan Y, Hu Z, et al. Direct observation of semiconductor-metal phase transition in bilayer tungsten diselenide induced by potassium surface functionalization. ACS Nano. 2018; 12(2): 2070-2077.
[185.]
Li W, Gong X, Yu Z, et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature. 2023; 613(7943): 274-279.
[186.]
Knobloch T, Illarionov YY, Ducry F, et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat Electron. 2021; 4(2): 98-108.
[187.]
Ma J, Chen X, Wang X, et al. Engineering top gate stack for wafer-scale integrated circuit fabrication based on two-dimensional semiconductors. ACS Appl Mater Interfaces. 2022; 14(9): 11610-11618.
[188.]
McDonnell S, Brennan B, Azcatl A, et al. HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano. 2013; 7(11): 10354-10361.
[189.]
Kim HG, Lee H-B-R. Atomic layer deposition on 2D materials. Chem Mater. 2017; 29(9): 3809-3826.
[190.]
Sheng Y, Chen X, Liao F, et al. Gate stack engineering in MoS2 field-effect transistor for reduced channel doping and hysteresis effect. Adv Electron Mater. 2020; 7:2000395.
[191.]
Illarionov YY, Knobloch T, Jech M, et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat Commun. 2020; 11(1):3385.
[192.]
Zou X, Wang J, Chiu CH, et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv Mater. 2014; 26(36): 6255-6261.
[193.]
Dahal A, Addou R, Azcatl A, et al. Seeding atomic layer deposition of alumina on graphene with Yttria. ACS Appl Mater Interfaces. 2015; 7(3): 2082-2087.
[194.]
Zhang H, Arutchelvan G, Meersschaut J, et al. MoS2 functionalization with a sub-nm thin SiO2 layer for atomic layer deposition of high-κ dielectrics. Chem Mater. 2017;29(16): 6772-6780.
[195.]
Park JH, Fathipour S, Kwak I, et al. Atomic layer deposition of Al2O3 on WSe2 functionalized by titanyl phthalocyanine. ACS Nano. 2016; 10(7): 6888-6896.
[196.]
Illarionov YY, Banshchikov AG, Polyushkin DK, et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat Electron. 2019; 2(6): 230-235.
[197.]
Cheol Shin W, Yong Kim T, Sul O, Jin Cho B. Seeding atomic layer deposition of high-k dielectric on graphene with ultrathin poly(4-vinylphenol) layer for enhanced device performance and reliability. Appl Phys Lett. 2012; 101(3):033507.
[198.]
Xu F, Wu Z, Liu G, et al. Few-layered MnAl2S4 dielectrics for high-performance Van Der Waals stacked transistors. ACS Appl Mater Interfaces. 2022; 14(22): 25920-25927.
[199.]
Zhu CY, Qin JK, Huang PY, et al. 2D indium phosphorus sulfide (In2P3S9): An emerging Van Der Waals high-k dielectrics. Small. 2022; 18(5):2104401.
[200.]
Yi J, Sun X, Zhu C, et al. Double-gate MoS2 field-effect transistors with full-range tunable threshold voltage for multifunctional logic circuits. Adv Mater. 2021; 33(27):2101036.
[201.]
Wu L, Wang A, Shi J, et al. Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nat Nanotechnol. 2021; 16(8): 882-887.
[202.]
Chen Y, Wang Y, Wang Z, et al. Unipolar barrier photodetectors based on Van Der Waals heterostructures. Nat Electron. 2021; 4(5): 357-363.
[203.]
Jung Y, Choi MS, Nipane A, et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat Electron. 2019; 2(5): 187-194.
[204.]
Lee C, Rathi S, Khan MA, et al. Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates. Nanotechnology. 2018; 29(33):335202.
[205.]
Osanloo MR, Van de Put ML, Saadat A, Vandenberghe WG. Identification of two-dimensional layered dielectrics from first principles. Nat Commun. 2021; 12(1):5051.
[206.]
Liu L, Li P, Zhao Y, et al. Zeolite-like molecules: promising dielectrics for two-dimensional semiconductors. Sci China Mater. 2022; 66(1): 233-240.
[207.]
Banshchikov AG, Golosovskii IV, Krupin AV, et al. Epitaxial layers of nickel fluoride on Si(111): growth and stabilization of the orthorhombic phase. Phys Solid State. 2015; 57(8): 1647-1652.
[208.]
Kaveev AK, Anisimov OV, Banshchikov AG, Kartenko NF, Ulin VP, Sokolov NS. Epitaxial growth on silicon and characterization of MnF2 and ZnF2 layers with metastable orthorhombic structure. J Appl Phys. 2005; 98(1):013519.
[209.]
Foster AS, Trevethan T, Shluger AL. Structure and diffusion of intrinsic defects, adsorbed hydrogen, and water molecules at the surface of alkali-earth fluorides calculated using density functional theory. Phys Rev B. 2009; 80(11):115421.
[210.]
Illarionov YY, Banshchikov AG, Polyushkin DK, et al. Reliability of scalable MoS2 FETs with 2 nm crystalline CaF2 insulators. 2D Mater. 2019; 6(4):045004.
[211.]
Wachter S, Polyushkin DK, Bethge O, Mueller T. A microprocessor based on a two-dimensional semiconductor. Nat Commun. 2017; 8(1):14948.
[212.]
Goossens S, Navickaite G, Monasterio C, et al. Broadband image sensor array based on graphene-CMOS integration. Nat Photonics. 2017; 11(6): 366-371.
[213.]
Shi Y, Liang X, Yuan B, et al. Electronic synapses made of layered two-dimensional materials. Nat Electron. 2018; 1(8): 458-465.
[214.]
Chen S, Mahmoodi MR, Shi Y, et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat Electron. 2020; 3(10): 638-645.
[215.]
Liu L, Liu C, Jiang L, et al. Ultrafast non-volatile flash memory based on Van Der Waals heterostructures. Nat Nanotechnol. 2021; 16(8): 874-881.
[216.]
Dai S, Zhao Y, Wang Y, et al. Recent advances in transistor-based artificial synapses. Adv Funct Mater. 2019; 29(42):1903700.
[217.]
Agarwal H, Terres B, Orsini L, et al. 2D-3D integration of hexagonal boron nitride and a high-κ dielectric for ultrafast graphene-based electro-absorption modulators. Nat Commun. 2021; 12(1):1070.
[218.]
Schwierz F. Graphene transistors: status, prospects, and problems. Proc IEEE. 2013; 101(7): 1567-1584.
[219.]
Chhowalla M, Jena D, Zhang H. Two-dimensional semiconductors for transistors. Nat Rev Mater. 2016; 1(11):16052.
[220.]
Romagnoli M, Sorianello V, Midrio M, et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat Rev Mater. 2018; 3(10): 392-414.
[221.]
Jiang H, Li B, Wei Y, et al. High-performance gold/graphene/germanium photodetector based on a graphene-on-germanium wafer. Nanotechnology. 2022; 33(34):345204.
[222.]
Marconi S, Giambra MA, Montanaro A, et al. Photo thermal effect graphene detector featuring 105 Gbit s-1 NRZ and 120 Gbit s-1 PAM4 direct detection. Nat Commun. 2021; 12(1): 806.
[223.]
Koppens FH, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol. 2014; 9(10): 780-793.
[224.]
Sorianello V, Midrio M, Contestabile G, et al. Graphene-silicon phase modulators with gigahertz bandwidth. Nat Photonics. 2017; 12(1): 40-44.
[225.]
Sorianello V, De Angelis G, Cassese T, et al. Complex effective index in graphene-silicon waveguides. Opt Express. 2016; 24(26):29984.
[226.]
Miyoshi Y, Fukazawa Y, Amasaka Y, et al. High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer. Nat Commun. 2018; 9(1):1279.
[227.]
Schall D, Pallecchi E, Ducournau G, Avramovic V, Otto M, Neumaier D. Record high bandwidth integrated graphene photodetectors for communication beyond 180 Gb/s. In: OpticalFiber Communication Conference.OSA Technical Digest, paper M2I.4; 2018.
[228.]
Zheng W, Lin R, Zhang Z, Huang F Vacuum-ultraviolet photodetection in few-layered h-BN. ACS Appl Mater Interfaces. 2018; 10(32): 27116-27123.
[229.]
Sun L, Zhang Y, Han G, et al. Self-selective Van Der Waals heterostructures for large scale memory array. Nat Commun. 2019; 10(1):3161.
[230.]
Dodda A, Jayachandran D, Pannone A, et al. Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat Mater. 2022; 21(12): 1379-1387.
[231.]
Meng W, Xu F, Yu Z, et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat Nanotechnol. 2021; 16(11): 1231-1236.
[232.]
Hu YT, Pantouvaki M, Brems S, et al. Broad 10Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects. In: 2014 IEEE International Electron Devices Meeting; 2014: 5.6. 1-5.6.4.
[233.]
McManus D, Vranic S, Withers F, et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat Nanotechnol. 2017; 12(4): 343-350.
[234.]
Kim S, Kim YC, Choi YJ, et al. Vertically stacked CVD-grown 2D heterostructure for wafer-scale electronics. ACS Appl Mater Interfaces. 2019; 11(38): 35444-35450.
[235.]
Choi C, Choi MK, Liu S, et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat Commun. 2017; 8(1):1664.
[236.]
Liu L, Gong P, Liu K, et al. Scalable Van Der Waals encapsulation by inorganic molecular crystals (Adv. Mater. 7/2022). Adv Mater. 2022; 34(7):2106041.
[237.]
Zhu X, Chen L, Tang X, et al. Plasmonic enhancement in deep ultraviolet photoresponse of hexagonal boron nitride thin films. Appl Phys Lett. 2022; 120(9):091109.
[238.]
Shen Y, Zheng W, Zhu K, et al. Variability and yield in h-BN-based memristive circuits: the role of each type of defect. Adv Mater. 2021; 33(41):2103656.
[239.]
Jang AR, Hong S, Hyun C, et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 2016; 16(5): 3360-3366.
[240.]
Kim SM, Hsu A, Park MH, et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat Commun. 2015; 6(1):8662.
[241.]
Wu X, Ge R, Chen PA, et al. Thinnest nonvolatile memory based on monolayer h-BN. Adv Mater. 2019; 31(15):1806790.
[242.]
Schulman DS, Arnold AJ, Das S. Contact engineering for 2D materials and devices. Chem Soc Rev. 2018; 47(9): 3037-3058.
[243.]
Li N, Wang Q, Shen C, et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat Electron. 2020; 3(11): 711-717.
[244.]
Lin Z, Liu Y, Halim U, et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature. 2018; 562(7726): 254-258.
[245.]
Migliato Marega G, Zhao Y, Avsar A, et al. Logic-in-memory based on an atomically thin semiconductor. Nature. 2020; 587(7832): 72-77.
[246.]
Feng X, Li S, Wong SL, et al. Self-selective multi-terminal memtransistor crossbar array for in-memory computing. ACS Nano. 2021; 15(1): 1764-1774.
[247.]
Ning H, Yu Z, Zhang Q, et al. An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nat Nanotechnol. 2023; 18(5): 493-500.
[248.]
Ma S, Wu T, Chen X, et al. An artificial neural network chip based on two-dimensional semiconductor. Sci Bull. 2022; 67(3): 270-277.
[249.]
Zhang X, Grajal J, Vazquez-Roy JL, et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature. 2019; 566(7744): 368-372.
[250.]
Jang H, Liu C, Hinton H, et al. Optoelectronic neural networks: an atomically thin optoelectronic machine vision processor (Adv. Mater. 36/2020). Adv Mater. 2020; 32(36):e2002431.
[251.]
Kong L, Li G, Su Q, et al. Inkjet-Printed, large-area, flexible photodetector array based on electrochemical exfoliated MoS2 film for photoimaging. Adv Eng Mater. 2022; 25(2):2200946.
[252.]
Hong S, Zagni N, Choo S, et al. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat Commun. 2021; 12(1):3559.
[253.]
Miao J, Leblanc C, Wang J, et al. Heterojunction tunnel triodes based on two-dimensional metal selenide and three-dimensional silicon. Nat Electron. 2022; 5(11): 744-751.
[254.]
Tong L, Wan J, Xiao K, et al. Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nat Electron. 2023; 6: 37.
[255.]
Polyushkin DK, Wachter S, Mennel L, et al. Analogue two-dimensional semiconductor electronics. Nat Electron. 2020; 3(8): 486-491.
[256.]
Zhang Z, Yang X, Liu K, Wang R. Epitaxy of 2D materials toward single crystals. Adv Sci. 2022; 9(8):2105201.
[257.]
Wu J, Tan C, Tan Z, et al. Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 2017; 17(5): 3021-3026.
[258.]
Zhang Z, Ding M, Cheng T, et al. Continuous epitaxy of single-crystal graphite films by isothermal carbon diffusion through nickel. Nat Nanotechnol. 2022; 17(12): 1258-1264.
[259.]
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol. 2011; 6(3): 147-150.
[260.]
Howell ST, Grushina A, Holzner F, Brugger J. Thermal scanning probe lithography—a review. Microsyst Nanoeng. 2020; 6(1): 21.
[261.]
Du J, Liao Q, Hong M, et al. Piezotronic effect on interfacial charge modulation in mixed-dimensional Van Der Waals heterostructure for ultrasensitive flexible photodetectors. Nano Energy. 2019; 58: 85-93.
[262.]
Du J, Liao Q, Liu B, et al. Gate-controlled polarity-reversible photodiodes with ambipolar 2D semiconductors. Adv Funct Mater. 2020; 31(8):2007559.
[263.]
Zhang X, Liu B, Gao L, et al. Near-ideal Van Der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat Commun. 2021; 12(1):1522.
[264.]
Seok H, Megra YT, Kanade CK, et al. Low-temperature synthesis of wafer-scale MoS2-WS2 vertical heterostructures by single-step penetrative plasma sulfurization. ACS Nano. 2021; 15(1): 707-718.
[265.]
Kang T, Tang TW, Pan B, Liu H, Zhang K, Luo Z. Strategies for controlled growth of transition metal dichalcogenides by chemical vapor deposition for integrated electronics. ACS Materials Au. 2022; 2(6): 665-685.
Funding
National Natural Science Foundation of China(U21A2069); National Natural Science Foundation of China(21825103)
PDF

Accesses

Citations

Detail

Sections
Recommended

/