Reveal the capacity loss of lithium metal batteries through analytical techniques

Cong Ma, Ke Yue, Yu Xie, Yujing Liu, Xinyong Tao, Jun Lu

InfoScience ›› 2024, Vol. 1 ›› Issue (1) : e12006.

PDF
InfoScience ›› 2024, Vol. 1 ›› Issue (1) : e12006. DOI: 10.1002/inc2.12006
REVIEW

Reveal the capacity loss of lithium metal batteries through analytical techniques

Author information +
History +

Abstract

High energy density and stable long cycle are the basic requirements for an ideal battery. At present, lithium (Li) metal anode is regarded as one of the most promising anode materials, but it still faces major problems in terms of capacity fading and safe and stable long-term cycle. The reason for the continuous fading of Li anode capacity is mainly due to the loss of active Li source, and the loss of Li source is mainly due to the continuous generation of dead Li. At the same time, the unstable interface and dendrite growth of Li anodes during the Li plating/delithiation process eventually lead to battery safety issues. In fact, recent studies have shown that the disordered expansion of dendrites is the main reason for the infinite generation of dead Li. Therefore, here we take different detection techniques as clues, review the exploration process of qualitative and quantitative research on the source and mechanism of Li capacity loss, and summarize the strategies to reduce dead Li generation and capacity fading by inhibiting dendrite formation. In particular, we give suggestions on the development of advanced testing methods on how to further study the problem of dead Li, and also give relevant strategy suggestions on how to completely solve the problem of capacity loss in the future, with the main goal of suppressing dendrites.

Keywords

analytical techniques / anode interface / capacity loss / dead lithium / lithium metal battery

Cite this article

Download citation ▾
Cong Ma, Ke Yue, Yu Xie, Yujing Liu, Xinyong Tao, Jun Lu. Reveal the capacity loss of lithium metal batteries through analytical techniques. InfoScience, 2024, 1(1): e12006 https://doi.org/10.1002/inc2.12006

References

[1.]
Thackeray MM, Wolverton C, Isaacs ED. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci. 2012; 5(7): 7854-7863.
[2.]
Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017; 12(3): 194-206.
[3.]
Zhang JG, Xu W, Xiao J, Cao X, Liu J. Lithium metal anodes with nonaqueous electrolytes. Chem Rev. 2020; 120(24): 13312-13348.
[4.]
Yuan H, Ding X, Liu T, et al. A review of concepts and contributions in lithium metal anode development. Mater Today. 2022; 53: 173-196.
[5.]
Chen M, Zheng J, Sheng O, et al. Sulfur-nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode. J Mater Chem A. 2019; 7(31): 18267-18274.
[6.]
Ju Z, Jin C, Yuan H, et al. A fast-ion conducting interface enabled by aluminum silicate fibers for stable Li metal batteries. Chem Eng J. 2021; 408:128016.
[7.]
Yuan H, Liu T, Liu Y, et al. A review of biomass materials for advanced lithium-sulfur batteries. Chem Sci. 2019; 10(32): 7484-7495.
[8.]
Zhu Z, Liu Y, Ju Z, et al. Synthesis of diverse green carbon nanomaterials through fully utilizing biomass carbon source assisted by KOH. ACS Appl Mater Inter. 2019; 11(27): 24205-24211.
[9.]
Liu T, Yang X, Nai J, et al. Recent development of Na metal anodes: interphase engineering chemistries determine the electrochemical performance. Chem Eng J. 2021; 409:127943.
[10.]
Liu H, Holoubek J, Zhou H, et al. An anode-free Li metal cell with replenishable Li designed for long cycle life. Energy Storage Mater. 2021; 36: 251-256.
[11.]
Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017; 117(15): 10403-10473.
[12.]
Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2009; 22(3): 587-603.
[13.]
Phillips W, Koyama R, Buehler M. Suppression of measurement interferences from interface states and mobile ions in thermally stimulated current measurements in an MOS capacitor. J Electrochem Soc. 1979; 126(11): 1979-1981.
[14.]
Tikekar MD, Choudhury S, Tu Z, Archer LA. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy. 2016; 1(9): 1-7.
[15.]
Jorne J, Tobias CW. Electrode kinetics of the alkali metals in AlCl3-propylene carbonate solution. J Electrochem Soc. 1974; 121(8): 994.
[16.]
Tiedemann WH, Bennion DN. Chemical and electrochemical behavior of lithium electrodes in dimethyl sulfite, electrolytic solutions. J Electrochem Soc. 1973; 120(12):1624.
[17.]
Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc. 1997 ; 144(8): L208-L210.
[18.]
Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J Power Sources. 2000; 89(2): 206-218.
[19.]
Zhai P, Liu L, Gu X, Wang T, Gong Y. Interface engineering for lithium metal anodes in liquid electrolyte. Adv Energy Mater. 2020; 10(34):2001257.
[20.]
Shin H, Park J, Han S, Sastry AM, Lu W. Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: experimental and computational studies. J Power Sources. 2015; 277: 169-179.
[21.]
Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J Electrochem Soc. 2009; 156(8): A694.
[22.]
Aurbach D, Daroux M, Faguy P, Yeager E. Identification of surface films formed on lithium in propylene carbonate solutions. J Electrochem Soc. 1987; 134(7):1611.
[23.]
Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2016; 3(3):1500213.
[24.]
Jiang C, Ma C, Yang F, Cai X, Liu Y, Tao X. Materials chemistry among the artificial solid electrolyte interphases of metallic lithium anodes. Mater Chem Front. 2021; 5(14): 5194-5210.
[25.]
Li S, Jiang M, Xie Y, Xu H, Jia J, Li J. Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv Mater. 2018; 30(17):e1706375.
[26.]
Peled E, Straze H. The kinetics of the magnesium electrode in thionyl chloride solutions. J Electrochem Soc. 1977; 124(7):1030.
[27.]
Kushima A, So KP, Su C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy. 2017; 32: 271-279.
[28.]
Wang W-W, Gu Y, Yan H, et al. Evaluating solid-electrolyte interphases for lithium and lithium-free anodes from nanoindentation features. Chem. 2020; 6(10): 2728-2745.
[29.]
Yuan S, Weng S, Wang F, et al. Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. Nano Energy. 2021; 83:105847.
[30.]
Wang Q, Liu B, Shen Y, et al. Confronting the challenges in lithium anodes for lithium metal batteries. Adv Sci. 2021; 8(17):2101111.
[31.]
Liu H, Cheng X-B, Jin Z, et al. Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem. 2019; 1(1):100003.
[32.]
Xiao J. How lithium dendrites form in liquid batteries. Science. 2019; 366(6464): 426-427.
[33.]
Stark JK, Ding Y, Kohl PA. Nucleation of electrodeposited lithium metal: dendritic growth and the effect of Co-deposited sodium. J Electrochem Soc. 2013 ; 160(9): D337-D342.
[34.]
Liu XH, Zhong L, Zhang LQ, et al. Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Appl Phys Lett. 2011; 98(18):183107.
[35.]
Brissot C, Rosso M, Chazalviel J-N, Baudry P, Lascaud S. In situ study of dendritic growth inlithium/PEO-salt/lithium cells. Electrochim Acta. 1998; 43(10-11): 1569-1574.
[36.]
Orsini F, Du Pasquier A, Beaudouin B, et al. In situ SEM study of the interfaces in plastic lithium cells. J Power Sources. 1999; 81: 918-921.
[37.]
Bai P, Li J, Brushett FR, Bazant MZ. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci. 2016; 9(10): 3221-3229.
[38.]
Dornbusch DA, Hilton R, Lohman SD, Suppes GJ. Experimental validation of the elimination of dendrite short-circuit failure in secondary lithium-metal convection cell batteries. J Electrochem Soc. 2014 ; 162(3): A262-A268.
[39.]
Tao R, Bi X, Li S, et al. Kinetics tuning the electrochemistry of lithium dendrites formation in lithium batteries through electrolytes. ACS Appl Mater Inter. 2017; 9(8): 7003-7008.
[40.]
Liu S, Li GR, Gao XP. Lanthanum nitrate as electrolyte additive to stabilize the surface morphology of lithium anode for lithium-sulfur battery. ACS Appl Mater Inter. 2016; 8(12): 7783-7789.
[41.]
López CM, Vaughey JT, Dees DW. Morphological transitions on lithium metal anodes. J Electrochem Soc. 2009; 156(9): A726.
[42.]
Lu D, Shao Y, Lozano T, et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv Energy Mater. 2015; 5(3):1400993.
[43.]
Peng Z, Wang S, Zhou J, et al. Volumetric variation confinement: surface protective structure for high cyclic stability of lithium metal electrodes. J Mater Chem A. 2016; 4(7): 2427-2432.
[44.]
Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun. 2016; 7:10992.
[45.]
Yamaki J-i, Tobishima S-i, Hayashi K, Saito K, Nemoto Y, Arakawa M. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J Power Sources. 1998; 74(2): 219-227.
[46.]
Cheng XB, Hou TZ, Zhang R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv Mater. 2016; 28(15): 2888-2895.
[47.]
Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc. 1979; 126(12):2047.
[48.]
Ding F, Xu W, Graff GL, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc. 2013; 135(11): 4450-4456.
[49.]
Okajima Y, Shibuta Y, Suzuki T. A phase-field model for electrode reactions with Butler-Volmer kinetics. Comput Mater Sci. 2010; 50(1): 118-124.
[50.]
Ling C, Banerjee D, Matsui M. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim Acta. 2012; 76: 270-274.
[51.]
Steiger J, Kramer D, Mönig R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution. Electrochim Acta. 2014; 136: 529-536.
[52.]
Liu K, Zhuo D, Lee HW, et al. Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator. Adv Mater. 2017; 29(4):1603987.
[53.]
Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc. 2016; 138(30): 9385-9388.
[54.]
Zhu B, Jin Y, Hu X, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv Mater. 2017; 29(2):1603755.
[55.]
Tang C-Y, Dillon SJ. In situ scanning electron microscopy characterization of the mechanism for Li dendrite growth. J Electrochem Soc. 2016 ; 163(8): A1660-A1665.
[56.]
Chen K-H, Wood KN, Kazyak E, et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J Mater Chem A. 2017; 5(23): 11671-11681.
[57.]
Wood KN, Kazyak E, Chadwick AF, et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent Sci. 2016; 2(11): 790-801.
[58.]
Zheng J, Yan P, Mei D, et al. Highly stable operation of lithium metal batteries enabled by the formation of a transient high-concentration electrolyte layer. Adv Energy Mater. 2016; 6(8):1502151.
[59.]
Weppner W, Huggins RA. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc. 1977; 124(10): 1569-1578.
[60.]
Zhu Y, Wang C. Galvanostatic intermittent titration technique for phase-transformation electrodes. J Phys Chem C. 2010; 114(6): 2830-2841.
[61.]
Arakawa M, Tobishima S-i, Nemoto Y, Ichimura M, Yamaki J-i. Lithium electrode cycleability and morphology dependence on current density. J Power Sources. 1993; 43(1-3): 27-35.
[62.]
Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J Power Sources. 2014; 261: 112-119.
[63.]
Chen X-R, Yan C, Ding J-F, Peng H-J, Zhang Q. New insights into “dead lithium” during stripping in lithium metal batteries. J Energy Chem. 2021; 62: 289-294.
[64.]
Liu F, Xu R, Wu Y, et al. Dynamic spatial progression of isolated lithium during battery operations. Nature. 2021; 600(7890): 659-663.
[65.]
Selim R, Bro P. Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. J Electrochem Soc. 1974; 121(11):1457.
[66.]
Liu H, Cheng XB, Xu R, et al. Plating/stripping behavior of actual lithium metal anode. Adv Energy Mater. 2019; 9(44).
[67.]
Zhao C-Z, Duan H, Huang J-Q, et al. Designing solid-state interfaces on lithium-metal anodes: a review. Sci China Chem. 2019; 62(10): 1286-1299.
[68.]
Sanchez AJ, Kazyak E, Chen Y, Chen K-H, Pattison ER, Dasgupta NP. Plan-view operando video microscopy of Li metal anodes: identifying the coupled relationships among nucleation, morphology, and reversibility. ACS Energy Lett. 2020; 5(3): 994-1004.
[69.]
Goodhew PJ, Humphreys J, Beanland R. Electron Microscopy and Analysis. CRC Press; 2000: 1-20.
[70.]
Sheng O, Hu H, Liu T, et al. Interfacial and ionic modulation of poly (ethylene oxide) electrolyte via localized iodization to enable dendrite-free lithium metal batteries. Adv Funct Mater. 2022; 32(14):2111026.
[71.]
Lu G, Nai J, Yuan H, et al. In-situ electrodeposition of nanostructured carbon strengthened interface for stabilizing lithium metal anode. ACS Nano. 2022; 16(6): 9883-9893.
[72.]
Rong G, Zhang X, Zhao W, et al. Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution. Adv Mater. 2017; 29(13):1606187.
[73.]
Sagane F, Shimokawa R, Sano H, Sakaebe H, Iriyama Y. In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface. J Power Sources. 2013; 225: 245-250.
[74.]
de Jonge N, Ross FM. Electron microscopy of specimens in liquid. Nat Nanotechnol. 2011; 6(11): 695-704.
[75.]
Singh N, Horwath JP, Bonnick P, et al. Role of lithium iodide addition to lithium thiophosphate: implications beyond conductivity. Chem Mater. 2020; 32(17): 7150-7158.
[76.]
Sun H, Liu Q, Chen J, et al. In situ visualization of lithium penetration through solid electrolyte and dead lithium dynamics in solid-state lithium metal batteries. ACS Nano. 2021; 15(12): 19070-19079.
[77.]
Lee S-Y, Shangguan J, Betzler S, Harris SJ, Doeff MM, Zheng H. Lithium metal stripping mechanisms revealed through electrochemical liquid cell electron microscopy. Nano Energy. 2022; 102:107641.
[78.]
Gong C, Pu SD, Gao X, et al. Revealing the role of fluoride-rich battery electrode interphases by operando transmission electron microscopy. Adv Energy Mater. 2021; 11(10):2003118.
[79.]
Sun Z, Li M, Xiao B, et al. In situ transmission electron microscopy for understanding materials and interfaces challenges in all-solid-state lithium batteries. eTransportation. 2022; 14:100203.
[80.]
Cheng N, Sun H, Beker AF, et al. Nanoscale visualization of metallic electrodeposition in a well-controlled chemical environment. Nanotechnology. 2022; 33(44):445702.
[81.]
Liu Y, Ju Z, Zhang B, et al. Visualizing the sensitive lithium with atomic precision: cryogenic electron microscopy for batteries. Acc Chem Res. 2021; 54(9): 2088-2099.
[82.]
Sheng O, Jin C, Chen M, et al. Platinum nano-interlayer enhanced interface for stable all-solid-state batteries observed via cryo-transmission electron microscopy. J Mater Chem A. 2020; 8(27): 13541-13547.
[83.]
Liu T, Zheng J, Hu H, et al. In-situ construction of a Mg-modified interface to guide uniform lithium deposition for stable all-solid-state batteries. J Energy Chem. 2021; 55: 272-278.
[84.]
Zachman MJ, Tu Z, Choudhury S, Archer LA, Kourkoutis LF. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries. Nature. 2018; 560(7718): 345-349.
[85.]
Fang C, Li J, Zhang M, et al. Quantifying inactive lithium in lithium metal batteries. Nature. 2019; 572(7770): 511-515.
[86.]
Jin C, Liu T, Sheng O, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat Energy. 2021; 6(4): 378-387.
[87.]
Sheng O, Zheng J, Ju Z, et al. In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM. Adv Mater. 2020; 32(34):2000223.
[88.]
Lin R, He Y, Wang C, et al. Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries. Nat Nanotechnol. 2022; 17(7): 768-776.
[89.]
Deng W, Yin X, Bao W, et al. Quantification of reversible and irreversible lithium in practical lithium-metal batteries. Nat Energy. 2022; 7(11): 1031-1041.
[90.]
Hsieh Y-C, Leißing M, Nowak S, Hwang B-J, Winter M, Brunklaus G. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy. Cell Rep Phys Sci. 2020; 1(8):100139.
[91.]
Liang Z, Xiang Y, Wang K, et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat Commun. 2023; 14(1): 259.
[92.]
Holtstiege F, Schmuch R, Winter M, Brunklaus G, Placke T. New insights into pre-lithiation kinetics of graphite anodes via nuclear magnetic resonance spectroscopy. J Power Sources. 2018; 378: 522-526.
[93.]
Kupers V, Kolek M, Bieker P, Winter M, Brunklaus G. In situ 7Li-NMR analysis of lithium metal surface deposits with varying electrolyte compositions and concentrations. Phys Chem Chem Phys. 2019; 21(47): 26084-26094.
[94.]
Bhattacharyya R, Key B, Chen H, Best AS, Hollenkamp AF, Grey CP. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat Mater. 2010; 9(6): 504-510.
[95.]
Yu SH, Huang X, Brock JD, Abruna HD. Regulating key variables and visualizing lithium dendrite growth: an operando X-ray study. J Am Chem Soc. 2019; 141(21): 8441-8449.
[96.]
Lv S, Verhallen T, Vasileiadis A, et al. Operando monitoring the lithium spatial distribution of lithium metal anodes. Nat Commun. 2018; 9(1):2152.
[97.]
Zier M, Scheiba F, Oswald S, et al. Lithium dendrite and solid electrolyte interphase investigation using OsO4. J Power Sources. 2014; 266: 198-207.
[98.]
Huang W, Ye Y, Chen H, et al. Onboard early detection and mitigation of lithium plating in fast-charging batteries. Nat Commun. 2022; 13(1):7091.
[99.]
Li Y, Zhang Y, Li Z, et al. Operando decoding of surface strain in anode-free lithium metal batteries via optical fiber sensor. Adv Sci. 2022; 9(26):e2203247.
[100.]
Nelson J, Misra S, Yang Y, et al. In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J Am Chem Soc. 2012; 134(14): 6337-6343.
[101.]
Chao S-C, Yen Y-C, Song Y-F, Chen Y-M, Wu H-C, Wu N-L. A study on the interior microstructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy. Electrochem Commun. 2010; 12(2): 234-237.
[102.]
Sun F, Zielke L, Markotter H, et al. Morphological evolution of electrochemically plated/stripped lithium microstructures investigated by synchrotron X-ray phase contrast tomography. ACS Nano. 2016; 10(8): 7990-7997.
[103.]
Liu DX, Co AC. Revealing chemical processes involved in electrochemical (De)Lithiation of Al with in situ neutron depth profiling and X-ray diffraction. J Am Chem Soc. 2016; 138(1): 231-238.
[104.]
Liu DX, Wang J, Pan K, et al. In situ quantification and visualization of lithium transport with neutrons. Angew Chem Int Ed. 2014; 53(36): 9498-9502.
[105.]
Oudenhoven JF, Labohm F, Mulder M, Niessen RA, Mulder FM, Notten PH. In situ neutron depth profiling: a powerful method to probe lithium transport in micro-batteries. Adv Mater. 2011; 23(35): 4103-4106.
[106.]
Zhang X, Verhallen TW, Labohm F, Wagemaker M. Direct observation of Li-ion transport in electrodes under nonequilibrium conditions using neutron depth profiling. Adv Energy Mater. 2015; 5(15):1500498.
[107.]
Ye H, Zhang Y, Yin YX, Cao FF, Guo YG. An outlook on low-volume-change lithium metal anodes for long-life batteries. ACS Cent Sci. 2020; 6(5): 661-671.
[108.]
Zeng L, Zhou T, Xu X, et al. General construction of lithiophilic 3D skeleton for dendrite-free lithium metal anode via a versatile MOF-derived route. Sci China Mater. 2022; 65(2): 337-348.
[109.]
Zuo TT, Wu XW, Yang CP, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv Mater. 2017; 29(29):1700389.
[110.]
Chi S-S, Liu Y, Song W-L, Fan L-Z, Zhang Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv Funct Mater. 2017; 27(24):1700348.
[111.]
Li Q, Zhu S, Lu Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv Funct Mater. 2017; 27(18):1606422.
[112.]
Zhang Y, Luo W, Wang C, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc Natl Acad Sci U S A. 2017; 114(14): 3584-3589.
[113.]
Liang Z, Yan K, Zhou G, et al. Composite lithium electrode with mesoscale skeleton via simple mechanical deformation. Sci Adv. 2019; 5(3): eaau5655.
[114.]
Raji AO, Villegas Salvatierra R, Kim ND, et al. Lithium batteries with nearly maximum metal storage. ACS Nano. 2017; 11(6): 6362-6369.
[115.]
Yang CP, Yin YX, Zhang SF, Li NW, Guo YG. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun. 2015; 6(1):8058.
[116.]
Cao Z, Li B, Yang S. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays. Adv Mater. 2019; 31(29):e1901310.
[117.]
Jin S, Ye Y, Niu Y, et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J Am Chem Soc. 2020; 142(19): 8818-8826.
[118.]
Chen Y, Yue M, Liu C, et al. Long cycle life lithium metal batteries enabled with upright lithium anode. Adv Funct Mater. 2019; 29(15):1806752.
[119.]
Zhang B, Shi H, Ju Z, et al. Arrayed silk fibroin for high-performance Li metal batteries and atomic interface structure revealed by cryo-TEM. J Mater Chem A. 2020; 8(48): 26045-26054.
[120.]
Yang H, Guo C, Naveed A, et al. Recent progress and perspective on lithium metal anode protection. Energy Storage Mater. 2018; 14: 199-221.
[121.]
Miao R, Yang J, Feng X, Jia H, Wang J, Nuli Y. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J Power Sources. 2014; 271: 291-297.
[122.]
Li W, Yao H, Yan K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun. 2015; 6(1):7436.
[123.]
Ding F, Xu W, Graff GL, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc. 2013; 135(11): 4450-4456.
[124.]
Yamada Y, Yamada A. Superconcentrated electrolytes for lithium batteries. J Electrochem Soc. 2015; 162(14):A2406.
[125.]
Goodman JKS, Kohl PA. Effect of alkali and alkaline earth metal salts on suppression of lithium dendrites. J Electrochem Soc. 2014 ; 161(9): D418-D424.
[126.]
Camacho-Forero LE, Smith TW, Balbuena PB. Effects of high and low salt concentration in electrolytes at lithium-metal anode surfaces. J Phys Chem C. 2016; 121(1): 182-194.
[127.]
Qian J, Henderson WA, Xu W, et al. High rate and stable cycling of lithium metal anode. Nat Commun. 2015; 6(1):6362.
[128.]
Yao S, Yang Y, Liang Z, et al. A Dual- functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv Funct Mater. 2023; 33(13):2212466.
[129.]
Zhou T, Shen J, Wang Z, et al. Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode. Adv Funct Mater. 2020; 30(14):1909159.
[130.]
Yang Y, Yao S, Wu Y, et al. Hydrogen-bonded organic framework as superior separator with high lithium affinity C═ N bond for low N/P ratio lithium metal batteries. Nano Lett. 2023; 23(11): 5061-5069.
[131.]
Liu Y, Wu Y, Zheng J, et al. Silicious nanowires enabled dendrites suppression and flame retardancy for advanced lithium metal anodes. Nano Energy. 2021; 82:105723.
[132.]
Zheng J, Wang J, Guo T, et al. Highly thermostable interphase enables boosting high-temperature lifespan for metallic lithium batteries. Small. 2023; 19(15):2207742.
[133.]
Chen H, Pei A, Lin D, et al. Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv Energy Mater. 2019; 9(22):1900858.
[134.]
Ju Z, Nai J, Wang Y, et al. Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nat Commun. 2020; 11(1): 488.
[135.]
Liu Y, Tao X, Wang Y, et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science. 2022; 375(6582): 739-745.
[136.]
Li NW, Yin YX, Yang CP, Guo YG. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater. 2016; 28(9): 1853-1858.
[137.]
Liang Z, Peng C, Shen J, et al. Lithiophilic single-atom Co on carbon nanosheets synergistically modulates Li deposition enable dendrite-free lithium metal batteries. J Power Sources. 2023; 556:232474.
[138.]
Zheng G, Lee SW, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol. 2014; 9(8): 618-623.
[139.]
Jing H-K, Kong L-L, Liu S, Li G-R, Gao X-P. Protected lithium anode with porous Al2O3layer for lithium-sulfur battery. J Mater Chem A. 2015; 3(23): 12213-12219.
[140.]
Zheng J, Ju Z, Zhang B, et al. Lithium ion diffusion mechanism on the inorganic components of the solid-electrolyte interphase. J Mater Chem A. 2021; 9(16): 10251-10259.
[141.]
Xu R, Zhang X-Q, Cheng X-B, et al. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv Funct Mater. 2018; 28(8):1705838.
[142.]
Ju Z, Lu G, Sheng O, et al. Soybean protein fiber enabled controllable Li deposition and a LiF-nanocrystal-enriched interface for stable Li metal batteries. Nano Lett. 2022; 22(3): 1374-1381.
[143.]
Zhan YX, Shi P, Ma XX, et al. Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions. Adv Energy Mater. 2021; 12(2):2103291.
[144.]
Zhu R, Yang H, Fadillah L, et al. A lithiophilic carbon scroll as a Li metal host with low tortuosity design and “Dead Li” self-cleaning capability. J Mater Chem A. 2021; 9(22): 13332-13343.
[145.]
Chen J, Cheng Z, Liao Y, Yuan L, Huang Y. Selection of redox mediators for reactivating dead Li in lithium metal batteries. Adv Energy Mater. 2022; 12(40):2201800.
Funding
National Key Research and Development Program of China(2022YFB3807700); National Natural Science Foundation of China(52171225); National Natural Science Foundation of China(52102314); National Natural Science Foundation of China(52225208); National Natural Science Foundation of China(51972285); National Natural Science Foundation of China(U21A20174); Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2020R01002)
PDF

Accesses

Citations

Detail

Sections
Recommended

/