2025-01-20 2025, Volume 7 Issue 1

  • Select all
  • RESEARCH ARTICLE

    The morphology of plated lithium (MPL) metal on graphite anodes, traditionally described as “moss-like” and “dendrite-like”, exert a substantial negative influence on the performance of lithium-ion batteries (LIBs) by modulating the metal-electrolyte interface and side reaction rates. However, a systematic and quantitative analysis of MPL is lacking, impeding effective evaluation and manipulation of this detrimental issue. In this study, we transition from a qualitative analysis to a quantitative one by conducting a detailed examination of the MPL. Our findings reveal that slender lithium dendrites reduces the lifespan and safety of LIB by increasing the side reaction rates and promoting the formation of dead lithium. To further evaluate the extent of the detrimental effect of MPL, we propose the specific surface area (SSA) as a critical metric, and develop an in situ method integrating expansion force and electrochemical impedance spectroscopy to estimate SSA. Finally, we introduce a pulse current protocol to manipulate hazardous MLP. Phase field model simulations and experiments demonstrate that this protocol significantly enhances the reversibility of plated lithium. This research offers a novel morphological perspective on lithium plating, providing a more detailed fundamental understanding that facilitates effective evaluation and manipulation of plated lithium, thereby enhancing the safety and extending the cycle life of LIBs.

  • RESEARCH ARTICLE

    The unity of high-stability and high-performance in two-dimensional (2D) material devices has consistently posed a fundamental challenge. Halide perovskites have shown exceptional optoelectronic properties but poor stability. Conversely, oxide perovskites exhibit exceptional stability, yet hardly achieve their high photoelectric performances. Herein, for the first time, high-stability 2D perovskite LaNb2O7 (LNO) is engineered for high-performance wide-temperature UV light detection and human motion detection. High-quality LNO nanosheets are prepared by solid-state calcination and liquid-phase exfoliation technique, resulting in exceptional stability against high temperature, acid, and alkali solutions. As expected, individual LNO nanosheet device achieves ultra-wide temperature (80–780 K) and ultra-high (3.7 × 104 A W–1 at 780 K) UV light detection. Importantly, it shows high responsivity (171 A W–1), extraordinary detectivity (4 × 1012 Jones), fast speed (0.3/97 ms), and long-term stability under ambient conditions. In addition, wafer-scale LNO film devices can be used as pixel array detectors for UV imaging, and large-area flexible LNO film devices exhibit satisfactory photodetection performance after repeated bending tests. Interestingly, LNO nanosheets also exhibit distinct piezoelectric characteristics, which can serve as high-sensitivity stress sensors for human motion detection. These encouraging results may pave the way for more innovative advances in 2D perovskite oxide materials and their diverse applications.

  • RESEARCH ARTICLE

    Broadband photodetectors (PDs) capable of multi-wavelength detection have garnered significant interest for applications in environmental monitoring, optical communication, spectral analysis, and imaging sensing. Low-bandgap Pb–Sn hybrid perovskite photodetectors can extend the spectral response from the ultraviolet–visible (UV–vis) range to the near-infrared (NIR) and reduce the toxicity associated with Pb2+. The strategic introduction of Sn2+ into Cs0.15FA0.85PbxSn1–xI3 (x = 1, 0.8, 0.6, 0.5, 0.4, 0.2, and 0) not only preserves the cubic crystal structure with conformal multigrain growth but also broadens the film’s absorption spectrum from 800 to 1000 nm NIR region. This indicates a well-controlled tunability of the Pb–Sn binary perovskite system. Specifically, the self-powered photodetector with a device structure of ITO/NiOx/PTAA/Cs0.15FA0.85Pb0.5Sn0.5I3/PCBM/BCP/Ag has shown remarkable optoelectrical properties. It exhibits a high external quantum efficiency (EQE) of up to 80% across the spectrum from 300 to 1000 nm, a responsivity (R) exceeding 0.5 A/W, and high detectivity (D*) value of 1.04 × 1012 Jones at 910 nm and 3.38 × 1011 Jones at 1000 nm after weak attenuation. Intriguingly, the dark current of the Cs0.15FA0.85Pb0.5Sn0.5I3 device is four orders of magnitude lower than that of devices made with pristine Pb or Sn only, strongly correlating with its significantly increased built-in potential and reduced trap density. Consequently, it demonstrates a –3 dB bandwidth of 2.23 × 104 Hz, fast rise and decay times of 61 and 30 µs, respectively, and a linear dynamic range (LDR) of 155 dB. Benefiting from its high sensitivity, a 5 × 5 PD array for NIR imaging and non-invasive pulse detection for photoplethysmography applications has been successfully demonstrated, showcasing the prosperous potential of Pb–Sn hybrid perovskite in the NIR range.

  • REVIEW ARTICLE

    Applying catalysts for electrochemical energy conversion holds great promise for developing clean and sustainable energy sources. One of the main advantages of electrocatalysis is its ability to reduce conversion energy loss significantly. However, the wide application of electrocatalysts in these conversion processes has been hindered by poor catalytic performance and limited resources of catalyst materials. To overcome these challenges, researchers have turned to two-dimensional (2D) materials, which possess large specific surface areas and can easily be engineered to have desirable electronic structures, making them promising candidates for high-performance electrocatalysis in various reactions. This comprehensive review focuses on engineering novel 2D material-based electrocatalysts and their application to seawater splitting. The review briefly introduces the mechanism of seawater splitting and the primary challenges of 2D materials. Then, we highlight the unique advantages and regulating strategies for seawater electrolysis based on recent advancements. We also review various 2D catalyst families for direct seawater splitting and delve into the physicochemical properties of these catalysts to provide valuable insights. Finally, we outline the vital future challenges and discuss the perspectives on seawater electrolysis. This review provides valuable insights for the rational design and development of cutting-edge 2D material electrocatalysts for seawater-electrolysis applications.

  • RESEARCH ARTICLE
    Jidong Liu, Haibo Gan, Qiaoyan Hao, Yonghong Zeng, Youning Gong, Jiaqi Zhu, Jiarui Huang, Fei Liu, Wenjing Zhang

    Dual-band photodetectors exhibit considerable advantages in target discrimination and navigation compared to single-band devices in complex circumstances. However, it remains a major challenge to overcome the limitations of traditional devices in terms of their integration with multiple light-absorbing layers and complicated optical components. In this study, a visible and near-infrared (NIR) dual-band polarimetric photodetector with a single light-absorbing layer is constructed by utilizing the distinctive conversion of linear dichroism (LD) polarity in two-dimensional niobium trisulfide (NbS3). The NbS3 photodetector exhibits selective detection behaviors in the visible and NIR bands, in which by switching the polarization angle of the incident light from 0° to 90°, photocurrent decreases in the visible region, and increases in the NIR region. Specifically, the degrees of linear polarization of photocurrent are 0.59 at 450 nm and –0.47 at 1300 nm, respectively. The opposite photoresponse in the visible and NIR bands of the photodetector significantly enhances the dual-band information recognition. Therefore, clear visible and NIR dual-band polarimetric imaging is accurately realized based on the NbS3 photodetector taking advantage of its fast response speed of 28 µs. Such anisotropic materials, with unique LD conversion features, can facilitate selective modulation between the visible and NIR spectral ranges and promote the development of next-generation multi-dimensional photodetection for various applications, including com/puter vision, surveillance, and biomedical imaging.

  • REVIEW ARTICLE
    Fang-Cheng Liang, Erdi Akman, Sikandar Aftab, Mustafa K. A. Mohammed, H. H. Hegazy, Xiujuan Zhang, Fei Zhang

    Over the past 10 years, perovskite solar cell (PSC) device technologies have advanced remarkably and exhibited a notable increase in efficiency. Additionally, significant innovation approaches have improved the stability related to heat, light, and moisture of PSC devices. Despite these developments in PSCs, the instability of PSCs is a pressing problem and an urgent matter to overcome for practical application. Recently, polymers have been suggested suggestion has been presented to solve the instability issues of PSCs and increase the photovoltaic parameters of devices. Here, first, the fundamental chemical bond types of self-healing polymers are presented. Then, a comprehensive presentation of the ability of self-healing polymers in rigid and flexible PSCs to enhance the various physical, mechanical, and optoelectronic properties is presented. Furthermore, valuable insights and innovative solutions for perovskite-based optoelectronics with self-healing polymers are provided, offering guidance for future optoelectronic applications.

  • RESEARCH ARTICLE
    Peng Wang, Guifen Sun, Shuaichuang Hua, Wei Yu, Chuizhou Meng, Qing Han, Jeonghyun Kim, Shijie Guo, Guozhen Shen, Yang Li

    Frequent heat waves and cold spells pose threats to human survival. Herein, we develop a multifunctional all-nanofiber cloth with physiological signal monitoring and personal thermal management capabilities through facile fiber electrospinning and ink printing techniques. The double-sided fabric mat of a thick carbon nanotube network with high solar absorption on top of a thermoplastic polyurethane nanofiber substrate with high solar reflectivity and mid-infrared emissivity offers a contrary thermal management effect of heating or cooling by opposite wearing mode. The integrated fabric strain and temperature sensors for health status evaluation through monitoring physiological signals of respiration and body temperature. By wearing a T-shirt tailored by the developed electronic cloth, the wearer’s skin temperature can be actively regulated with cooling by 5.4°C and warming by 3.0°C in hot and cold environments compared to normal clothing, respectively. This platform can inspire further studies in wearable multifunctional permeable electronics.

  • RESEARCH ARTICLE

    Developing intelligent electromagnetic wave (EMW) absorption materials with real-time response-ability is of great significance in complex application environments. Herein, highly compressible Fe@CNFs@Co/C elastic aerogels were assembled through the electrospinning method, achieving EMW absorption through pressure changes. By varying the pressure, the effective absorption bandwidth (EAB) of Fe@CNFs@Co/C elastic aerogels shows continuous changes from low frequency to high frequency. The EAB of Fe@CNFs@Co/C elastic aerogels is 14.4 GHz (3.36–17.76 GHz), which covers 90% of the range of S/C/X/Ku bands. The theoretical simulation indicates that the external pressure prompts a reduction in the spacing between the fiber layers in the aerogels and facilitates the formation of a 3D conductive network with enhanced attenuation ability of EMW. The uniform distribution of metal particles and appropriate layer spacing can effectively optimize the impedance matching to achieve the best EMW absorption performance. This work state clearly that the hierarchically assembled elastic aerogels composed of metal–organic frameworks (MOFs) derivatives and carbon fibers are ideal dynamic EMW absorption materials for intelligent EMW response.