Calcitonin and vitamin D3 have high therapeutic potential for improving diabetic mandibular growth

Mona A Abbassy , Ippei Watari , Ahmed S Bakry , Takashi Ono , Ali H Hassan

International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (1) : 39 -44.

PDF
International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (1) : 39 -44. DOI: 10.1038/ijos.2015.47
Article

Calcitonin and vitamin D3 have high therapeutic potential for improving diabetic mandibular growth

Author information +
History +
PDF

Abstract

A combination of vitamin D3 and the hormone calcitonin may restore normal growth of the lower jaw bone in young patients with diabetes. Diabetes impairs the growth of bones, including those of the head and face, potentially causing dental problems in young patients. Vitamin D3, which is produced by human skin exposed to sunlight, is known to improve survival of cells that build new bone; calcitonin is known to decrease the activity of cells that resorb bone. Mona Abbassy at King Abdulaziz University in Jeddah, Saudi Arabia, hypothesized that combining the two treatments could have synergistic effects and studied the effects in young rats, using molars as indicators of bone growth. Intermittent injections of vitamin D3 and calcitonin restored normal bone growth, and show promise for treatment of young patients with diabetes.

Keywords

type 1 diabetes mellitus / mandibular bone structure / mandibular bone formation / micro-computed tomography / bone / histomorphometry

Cite this article

Download citation ▾
Mona A Abbassy, Ippei Watari, Ahmed S Bakry, Takashi Ono, Ali H Hassan. Calcitonin and vitamin D3 have high therapeutic potential for improving diabetic mandibular growth. International Journal of Oral Science, 2015, 7(1): 39-44 DOI:10.1038/ijos.2015.47

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Giglio MJ, Lama MA. Effect of experimental diabetes on mandible growth in rats. Eur J Oral Sci, 2001, 109(3): 193-197.

[2]

Abbassy MA, Watari I, Soma K. Effect of experimental diabetes on craniofacial growth in rats. Arch Oral Biol, 2008, 53(9): 819-825.

[3]

Verna C, Melsen B. Tissue reaction to orthodontic tooth movement in different bone turnover conditions. Orthod Craniofac Res, 2003, 6(3): 155-163.

[4]

Abbassy MA, Watari I, Bakry AS. Diabetes detrimental effects on enamel and dentine formation. J Dent, 2015, 43(5): 589-596.

[5]

Thrailkill KM, Liu L, Wahl EC. Bone formation is impaired in a model of type 1 diabetes. Diabetes, 2005, 54(10): 2875-2881.

[6]

El-Bialy T, Aboul-Azm SF, El-Sakhawy M. Study of craniofacial morphology and skeletal maturation in juvenile diabetics (Type I). Am J Orthod Dentofacial Orthop, 2000, 118(2): 189-195.

[7]

Abbassy MA, Watari I, Soma K. The effect of diabetes mellitus on rat mandibular bone formation and microarchitecture. Eur J Oral Sci, 2010, 118(4): 364-369.

[8]

Al Ghafli MH, Padmanabhan R, Kataya HH. Effects of alpha-lipoic acid supplementation on maternal diabetes-induced growth retardation and congenital anomalies in rat fetuses. Mol Cell Biochem, 2004, 261(1/2): 123-135.

[9]

Andresen CJ, Moalli M, Turner CH. Bone parameters are improved with intermittent dosing of vitamin D3 and calcitonin. Calcif Tissue Int, 2008, 83(6): 393-403.

[10]

Erben RG, Bromm S, Stangassinger M. Therapeutic efficacy of 1α,25-dihydroxyvitamin D3 and calcium in osteopenic ovariectomized rats: evidence for a direct anabolic effect of 1α,25-dihydroxyvitamin D3 on bone. Endocrinology, 1998, 139(10): 4319-4328.

[11]

Martin TJ. Calcitonin, an update. Bone, 1999, 24(5 Suppl): 63S-65S.

[12]

Tein MS, Breen SA, Loveday BE. Bone mineral density and composition in rat pregnancy: effects of streptozotocin-induced diabetes mellitus and insulin replacement. Exp Physiol, 1998, 83(2): 165-174.

[13]

McCracken MS, Aponte-Wesson R, Chavali R. Bone associated with implants in diabetic and insulin-treated rats. Clin Oral Implants Res, 2006, 17(5): 495-500.

[14]

Gunness-Hey M, Hock JM, Gera I. Human parathyroid hormone (1-34) and salmon calcitonin do not reverse impaired mineralization produced by high doses of 1,25 dihydroxyvitamin D3. Calcif Tissue Int, 1986, 38(4): 234-238.

[15]

Shimomoto Y, Chung CJ, Iwasaki-Hayashi Y. Effects of occlusal stimuli on alveolar/jaw bone formation. J Dent Res, 2007, 86(1): 47-51.

[16]

Parfitt AM. Bone histomorphometry: standardization of nomenclature, symbols and units (summary of proposed system). Bone, 1988, 9(1): 67-69.

[17]

Takada H, Abe S, Tamatsu Y. Three-dimensional bone microstructures of the mandibular angle using micro-CT and finite element analysis: relationship between partially impacted mandibular third molars and angle fractures. Dent Traumatol, 2006, 22(1): 18-24.

[18]

Laib A, Rüegsegger P. Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone, 1999, 24(1): 35-39.

[19]

Nakano H, Maki K, Shibasaki Y. Three-dimensional changes in the condyle during development of an asymmetrical mandible in a rat: a microcomputed tomography study. Am J Orthod Dentofacial Orthop, 2004, 126(4): 410-420.

[20]

Yokoyama M, Atsumi T, Tsuchiya M. Dynamic changes in bone metabolism in the rat temporomandibular joint after molar extraction using bone scintigraphy. Eur J Oral Sci, 2009, 117(4): 374-379.

[21]

Rizzoli R, Boonen S, Brandi ML. The role of calcium and vitamin D in the management of osteoporosis. Bone, 2008, 42(2): 246-249.

[22]

Losken A, Mooney MP, Siegel MI. Comparative cephalometric study of nasal cavity growth patterns in seven animal models. Cleft Palate Craniofac J, 1994, 31(1): 17-23.

[23]

Siegel MI, Mooney MP. Appropriate animal models for craniofacial biology. Cleft Palate J, 1990, 27(1): 18-25.

[24]

Follak N, Klöting I, Wolf E. Histomorphometric evaluation of the influence of the diabetic metabolic state on bone defect healing depending on the defect size in spontaneously diabetic BB/OK rats. Bone, 2004, 35(1): 144-152.

[25]

Shyng YC, Devlin H, Sloan P. The effect of streptozotocin-induced experimental diabetes mellitus on calvarial defect healing and bone turnover in the rat. Int J Oral Maxillofac Surg, 2001, 30(1): 70-74.

[26]

Mishima N, Sahara N, Shirakawa M. Effect of streptozotocin-induced diabetes mellitus on alveolar bone deposition in the rat. Arch Oral Biol, 2002, 47(12): 843-849.

[27]

Glajchen N, Epstein S, Ismail F. Bone mineral metabolism in experimental diabetes mellitus: osteocalcin as a measure of bone remodeling. Endocrinology, 1988, 123(1): 290-295.

[28]

Shires R, Teitelbaum SL, Bergfeld MA. The effect of streptozotocin-induced chronic diabetes mellitus on bone and mineral homeostasis in the rat. J Lab Clin Med, 1981, 97(2): 231-240.

[29]

Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest, 2006, 116(8): 2062-2072.

[30]

Wallach S, Rousseau G, Martin L. Effects of calcitonin on animal and in vitro models of skeletal metabolism. Bone, 1999, 25(5): 509-516.

[31]

Tinkler SM, Williams DM, Johnson NW. Osteoclast formation in response to intraperitoneal injection of 1 alpha-hydroxycholecalciferol in mice. J Anat, 1981, 133(Pt 1): 91-97.

[32]

Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet, 2011, 377(9773): 1276-1287.

[33]

Eriksson SA, Lindgren JU. Combined treatment with calcitonin and 1,25-dihydroxyvitamin D3 for osteoporosis in women. Calcif Tissue Int, 1993, 53(1): 26-28.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/