Isolation and characterisation of human gingival margin-derived STRO-1/MACS+ and MACS cell populations

Karim M Fawzy El-Sayed , Sebastian Paris , Christian Graetz , Neemat Kassem , Mohamed Mekhemar , Hendrick Ungefroren , Fred Fändrich , Christof Dörfer

International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (2) : 80 -88.

PDF
International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (2) : 80 -88. DOI: 10.1038/ijos.2014.41
Article

Isolation and characterisation of human gingival margin-derived STRO-1/MACS+ and MACS cell populations

Author information +
History +
PDF

Abstract

Researchers in Germany and Egypt have identified a cell population in the gum margins with regenerative potential. A team led by Karim Fawzy El-Sayed, from the Christian Albrechts University in Kiel, Germany, and Cairo University in Egypt, magnetically sorted human gum tissue using antibodies that bind STRO-1, a surface protein that marks cells as mesenchymal stem cells. Cells expressing STRO-1 showed more molecular characteristics of stem cells, had greater proliferative capacity and could differentiate into more cell types than cells without STRO-1 on their surface. The study is the first to directly compare the two gum cell populations. STRO-1-positive cells in the gum margin could provide a renewable source of multipotent stem cells for the treatment of gingivitis and other types of periodontal disease.

Keywords

alkaline phosphatase / collagen / differentiation / gingiva / osteonectin / osteopontin / polymerase chain reaction / stem cells

Cite this article

Download citation ▾
Karim M Fawzy El-Sayed, Sebastian Paris, Christian Graetz, Neemat Kassem, Mohamed Mekhemar, Hendrick Ungefroren, Fred Fändrich, Christof Dörfer. Isolation and characterisation of human gingival margin-derived STRO-1/MACS+ and MACS cell populations. International Journal of Oral Science, 2015, 7(2): 80-88 DOI:10.1038/ijos.2014.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Larjava H, Wiebe C, Gallant-Behm C. Exploring scarless healing of oral soft tissues. J Can Dent Assoc, 2011, 77: b18.

[2]

Pitaru S, McCulloch CA, Narayanan SA. Cellular origins and differentiation control mechanisms during periodontal development and wound healing. J Periodont Res, 1994, 29(2): 81-94.

[3]

Sempowski GD, Borrello MA, Blieden TM. Fibroblast heterogeneity in the healing wound. Wound Repair Regen, 1995, 3(2): 120-131.

[4]

Schor SL, Ellis I, Irwin CR. Subpopulations of fetal-like gingival fibroblasts: characterisation and potential significance for wound healing and the progression of periodontal disease. Oral Dis, 1996, 2(2): 155-166.

[5]

Phipps RP, Borrello MA, Blieden TM. Fibroblast heterogeneity in the periodontium and other tissues. J Periodont Res, 1997, 32(1 Pt 2): 159-165.

[6]

Häkkinen L, Uitto VJ, Larjava H. Cell biology of gingival wound healing. Periodontol 2000, 2000, 24: 127-152.

[7]

Cho MI, Garant PR. Development and general structure of the periodontium. Periodontol 2000, 2000, 24: 9-27.

[8]

Ten Cate AR, Mills C, Solomon G. The development of the periodontium. A transplantation and autoradiographic study. Anat Rec, 1971, 170(3): 365-379.

[9]

Morsczeck C, Götz W, Schierholz J. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol, 2005, 24(2): 155-165.

[10]

Seo BM, Miura M, Gronthos S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 2004, 364(9429): 149-155.

[11]

Fawzy El-Sayed KM, Paris S, Becker ST. Periodontal regeneration employing gingival margin-derived stem/progenitor cells: an animal study. J Clin Periodontol, 2012, 39(9): 861-870.

[12]

Gottlow J, Nyman S, Karring T. New attachment formation as the result of controlled tissue regeneration. J Clin Periodontol, 1984, 11(8): 494-503.

[13]

Dominici M, Le Blanc K, Mueller I. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, 8(4): 315-317.

[14]

Amin HD, Olsen I, Knowles J. A procedure for identifying stem cell compartments with multi-lineage differentiation potential. Analyst, 2011, 136(7): 1440-1449.

[15]

Paris S, Wolgin M, Kielbassa AM. Gene expression of human beta-defensins in healthy and inflamed human dental pulps. J Endod, 2009, 35(4): 520-523.

[16]

Maehata Y, Takamizawa S, Ozawa S. Type III collagen is essential for growth acceleration of human osteoblastic cells by ascorbic acid 2-phosphate, a long-acting vitamin C derivative. Matrix Biol, 2007, 26(5): 371-381.

[17]

Zhang QZ, Shi SH, Liu Y. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol, 2009, 183(12): 7787-7798.

[18]

Moshaverinia A, Chen C, Akiyama K. Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. J Mater Sci Mater Med, 2012, 23(12): 3041-3051.

[19]

Fournier BP, Larjava H, Häkkinen L. Gingiva as a source of stem cells with therapeutic potential. Stem Cells Dev, 2013, 22(24): 3157-3177.

[20]

Widera D, Zander C, Heidbreder M. Adult palatum as a novel source of neural crest-related stem cells. Stem Cells, 2009, 27(8): 1899-1910.

[21]

Mitrano TI, Grob MS, Carrión F. Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol, 2010, 81(6): 917-925.

[22]

Marynka-Kalmani K, Treves S, Yafee M. The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells, 2010, 28(5): 984-995.

[23]

Fournier BP, Ferre FC, Couty L. Multipotent progenitor cells in gingival connective tissue. Tissue Eng Part A, 2010, 16(9): 2891-2899.

[24]

Tomar GB, Srivastava RK, Gupta N. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun, 2010, 393(3): 377-383.

[25]

Fawzy El-Sayed KM, Dorfer C, Fandrich F. Adult mesenchymal stem cells explored in the dental field. Adv Biochem Eng Biotechnol, 2013, 130: 89-103.

[26]

Fawzy El-Sayed KM, Dorfer C, Fandrich F. Erratum to: Adult mesenchymal stem cells explored in the dental field. Adv Biochem Eng Biotechnol, 2013, 130: 301-302.

[27]

Tang L, Li N, Xie H. Characterization of mesenchymal stem cells from human normal and hyperplastic gingiva. J Cell Physiol, 2011, 226(3): 832-842.

[28]

Gronthos S, Akintoye SO, Wang CY. Bone marrow stromal stem cells for tissue engineering. Periodontol 2000, 2006, 41: 188-195.

[29]

Fawzy El-Sayed KM, Paris S, Becker S. Isolation and characterization of multipotent postnatal stem/progenitor cells from human alveolar bone proper. J Craniomaxillofac Surg, 2012, 40(8): 735-742.

[30]

Bartold PM, Shi S, Gronthos S. Stem cells and periodontal regeneration. Periodontol 2000, 2006, 40: 164-172.

[31]

Friedenstein AJ, Deriglasova UF, Kulagina NN. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol, 1974, 2(2): 83-92.

[32]

Fawzy El-Sayed KM, Paris S, Becker ST. Periodontal regeneration employing gingival margin-derived stem/progenitor cells: an animal study. J Clin Periodontol, 2012, 39(9): 861-870.

[33]

Boxall SA, Jones E. Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int, 2012, 2012: 975871.

[34]

Itaya T, Kagami H, Okada K. Characteristic changes of periodontal ligament-derived cells during passage. J Periodont Res, 2009, 44(4): 425-433.

[35]

Wu L, Zhu F, Wu Y. Dentin sialophosphoprotein-promoted mineralization and expression of odontogenic genes in adipose-derived stromal cells. Cells Tissues Organs, 2008, 187(2): 103-112.

[36]

Larsen KH, Frederiksen CM, Burns JS. Identifying a molecular phenotype for bone marrow stromal cells with in vivo bone-forming capacity. J Bone Miner Res, 2010, 25(4): 796-808.

[37]

Tung PS, Domenicucci C, Wasi S. Specific immunohistochemical localization of osteonectin and collagen types I and III in fetal and adult porcine dental tissues. J Histochem Cytochem, 1985, 33(6): 531-540.

[38]

Jeon YM, Kook SH, Son YO. Role of MAPK in mechanical force-induced up-regulation of type I collagen and osteopontin in human gingival fibroblasts. Mol Cell Biochem, 2009, 320(1/2): 45-52.

[39]

Van Vlasselaer P, Falla N, Snoeck H. Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-Sca-1 monoclonal antibody and wheat germ agglutinin. Blood, 1994, 84(3): 753-763.

[40]

Yoon K, Buenaga R, Rodan GA. Tissue specificity and developmental expression of rat osteopontin. Biochem Biophys Res Commun, 1987, 148(3): 1129-1136.

[41]

Lian JB, Stein GS. Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. Iowa Orthop J, 1995, 15: 118-140.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/