Expert consensus on orthodontic treatment of protrusive facial deformities

Jie Pan, Yun Lu, Anqi Liu, Xuedong Wang, Yu Wang, Shiqiang Gong, Bing Fang, Hong He, Yuxing Bai, Lin Wang, Zuolin Jin, Weiran Li, Lili Chen, Min Hu, Jinlin Song, Yang Cao, Jun Wang, Jin Fang, Jiejun Shi, Yuxia Hou, Xudong Wang, Jing Mao, Chenchen Zhou, Yan Liu, Yuehua Liu

International Journal of Oral Science ›› 2025, Vol. 17 ›› Issue (1) : 0.

International Journal of Oral Science ›› 2025, Vol. 17 ›› Issue (1) : 0. DOI: 10.1038/s41368-024-00338-4
Review Article

Expert consensus on orthodontic treatment of protrusive facial deformities

Author information +
History +

Abstract

Protrusive facial deformities, characterized by the forward displacement of the teeth and/or jaws beyond the normal range, affect a considerable portion of the population. The manifestations and morphological mechanisms of protrusive facial deformities are complex and diverse, requiring orthodontists to possess a high level of theoretical knowledge and practical experience in the relevant orthodontic field. To further optimize the correction of protrusive facial deformities, this consensus proposes that the morphological mechanisms and diagnosis of protrusive facial deformities should be analyzed and judged from multiple dimensions and factors to accurately formulate treatment plans. It emphasizes the use of orthodontic strategies, including jaw growth modification, tooth extraction or non-extraction for anterior teeth retraction, and maxillofacial vertical control. These strategies aim to reduce anterior teeth and lip protrusion, increase chin prominence, harmonize nasolabial and chin-lip relationships, and improve the facial profile of patients with protrusive facial deformities. For severe skeletal protrusive facial deformities, orthodontic-orthognathic combined treatment may be suggested. This consensus summarizes the theoretical knowledge and clinical experience of numerous renowned oral experts nationwide, offering reference strategies for the correction of protrusive facial deformities.

Cite this article

Download citation ▾
Jie Pan, Yun Lu, Anqi Liu, Xuedong Wang, Yu Wang, Shiqiang Gong, Bing Fang, Hong He, Yuxing Bai, Lin Wang, Zuolin Jin, Weiran Li, Lili Chen, Min Hu, Jinlin Song, Yang Cao, Jun Wang, Jin Fang, Jiejun Shi, Yuxia Hou, Xudong Wang, Jing Mao, Chenchen Zhou, Yan Liu, Yuehua Liu. Expert consensus on orthodontic treatment of protrusive facial deformities. International Journal of Oral Science, 2025, 17(1): 0 https://doi.org/10.1038/s41368-024-00338-4

References

[1.]
Bills DA, Handelman CS, BeGole EA. Bimaxillary dentoalveolar protrusion: traits and orthodontic correction. Angle Orthod., 2005, 75: 333-339
[2.]
Jayaratne YS, Zwahlen RA, Lo J, Cheung LK. Facial soft tissue response to anterior segmental osteotomies: a systematic review. Int. J. Oral. Maxillofac. Surg., 2010, 39: 1050-1058.
CrossRef Google scholar
[3.]
Kamel AM, et al.. Dentofacial effects of miniscrew-anchored maxillary protraction on prepubertal children with maxillary deficiency: a randomized controlled trial. Prog. Orthod., 2023, 24. 22
CrossRef Google scholar
[4.]
Hoyte T, Ali A, Bearn D. Prevalence of bimaxillary protrusion: a systematic review. Open J. Epidemiol., 2021, 11: 37-46.
CrossRef Google scholar
[5.]
Alhammadi MS, Halboub E, Fayed MS, Labib A, El-Saaidi C. Global distribution of malocclusion traits: a systematic review. Dent. Press J. Orthod., 2018, 23: 40.e41-40.e10.
CrossRef Google scholar
[6.]
Ito A, et al.. Three-dimensional morphologic analysis of the maxillary alveolar bone after anterior tooth retraction with temporary anchorage devices. Angle Orthod., 2023, 93: 667-674.
CrossRef Google scholar
[7.]
Zhao T, et al.. Impact of pediatric obstructive sleep apnea on the development of class II hyperdivergent patients receiving orthodontic treatment: (a pilot study). Angle Orthod., 2018, 88: 560-566.
CrossRef Google scholar
[8.]
Rajandram RK, Ponnuthurai L, Mugunam K, Chan YS. Management of bimaxillary protrusion. Oral. Maxillofac. Surg. Clin. North Am., 2023, 35: 23-35.
CrossRef Google scholar
[9.]
Guo R, et al.. Long-term bone remodeling of maxillary anterior teeth with post-treatment alveolar bone defect in adult patients with maxillary protrusion: a prospective follow-up study. Prog. Orthod., 2023, 24. 36
CrossRef Google scholar
[10.]
Tawfik MGY, Izzat Bakhit D, El Sharaby FA, Moustafa YA, Dehis HM. Evaluation of the rate of anterior segment retraction in orthodontic patients with bimaxillary protrusion using friction vs frictionless mechanics: a single-center, single-blind randomized clinical trial. Angle Orthod., 2022, 92: 738-745.
CrossRef Google scholar
[11.]
Vaida, L. L., Negrutiu, B. M., Zetu, I. N., Moca, A. E. & Bran, S. Substantial improvements in facial morphology through surgical-orthodontic treatment: a case report and literature review. Medicina (Kaunas) 58 (2022).
[12.]
Al-Rokhami RK, et al.. Proximity of upper central incisors to incisive canal among subjects with maxillary dentoalveolar protrusion in various facial growth patterns. Angle Orthod., 2022, 92: 529-536.
CrossRef Google scholar
[13.]
Singh SP, Verma S. Orthodontics: current principles and techniques. J. Indian Orthod. Soc., 2019, 51: 141-142.
CrossRef Google scholar
[14.]
Liu R, et al.. Severe skeletal bimaxillary protrusion treated with micro-implants and a self-made four-curvature torquing auxiliary: a case report. World J. Clin. Cases, 2021, 9: 722-735.
CrossRef Google scholar
[15.]
Alhammadi MS, et al.. Orthodontic camouflage versus orthodontic-orthognathic surgical treatment in borderline class III malocclusion: a systematic review. Clin. Oral. Investig., 2022, 26: 6443-6455.
CrossRef Google scholar
[16.]
Chen L, et al.. Beyond smiles: static expressions in maxillary protrusion and associated positivity. Front. Psychol., 2021, 12: 514016.
CrossRef Google scholar
[17.]
Alkan O, Kaya Y, Tunca M, Keskin S. Changes in the gingival thickness and keratinized gingival width of maxillary and mandibular anterior teeth after orthodontic treatment. Angle Orthod., 2021, 91: 459-467.
CrossRef Google scholar
[18.]
Luo X, Huang H, Yin X, Shi B, Li J. Functional stability analyses of maxillofacial skeleton bearing cleft deformities. Sci. Rep., 2019, 9. 4261
CrossRef Google scholar
[19.]
Villela HM. Treatment of bimaxillary protrusion using intra- and extra-alveolar miniscrews associated to self-ligating brackets system. Dent. Press J. Orthod., 2020, 25: 66-84.
CrossRef Google scholar
[20.]
Hong SY, et al.. Alveolar bone remodeling during maxillary incisor intrusion and retraction. Prog. Orthod., 2019, 20. 47
CrossRef Google scholar
[21.]
Ackerman JL, Proffit WR. The characteristics of malocclusion: a modern approach to classification and diagnosis. Am. J. Orthod., 1969, 56: 443-454.
CrossRef Google scholar
[22.]
Lee RW, et al.. Relationship between surface facial dimensions and upper airway structures in obstructive sleep apnea. Sleep, 2010, 33: 1249-1254.
CrossRef Google scholar
[23.]
Moss ML, Salentijn L. The primary role of functional matrices in facial growth. Am. J. Orthod., 1969, 55: 566-577.
CrossRef Google scholar
[24.]
Moss ML. The functional matrix hypothesis revisited. 1. The role of mechanotransduction. Am. J. Orthod. Dentofac. Orthop., 1997, 112: 8-11.
CrossRef Google scholar
[25.]
Fernandes P, Pinto J, Ustrell-Torrent J. Relationship between oro and nasopharynx permeability and the direction of facial growth. Eur. J. Paediatr. Dent., 2017, 18: 37-40
[26.]
Ghorbanyjavadpour F, Rakhshan V. Factors associated with the beauty of soft-tissue profile. Am. J. Orthod. Dentofac. Orthop., 2019, 155: 832-843.
CrossRef Google scholar
[27.]
Hansen C, Markstrom A, Sonnesen L. Specific dento-craniofacial characteristics in non-syndromic children can predispose to sleep-disordered breathing. Acta Paediatr., 2022, 111: 473-477.
CrossRef Google scholar
[28.]
Yoon, A. et al. A roadmap of craniofacial growth modification for children with sleep-disordered breathing: a multidisciplinary proposal. Sleep 46, zsad095 (2023).
[29.]
Grubb J, Evans C. Orthodontic management of dentofacial skeletal deformities. Clin. Plast. Surg., 2007, 34: 403-415.
CrossRef Google scholar
[30.]
Xiong X, et al.. Distribution of various maxilla-mandibular positions and cephalometric comparison in chinese skeletal class II malocclusions. J. Contemp. Dent. Pract., 2020, 21: 822-828.
CrossRef Google scholar
[31.]
Mah M, Tan WC, Ong SH, Chan YH, Foong K. Three-dimensional analysis of the change in the curvature of the smiling line following orthodontic treatment in incisor class II division 1 malocclusion. Eur. J. Orthod., 2014, 36: 657-664.
CrossRef Google scholar
[32.]
Oueis R, Waite PD, Wang J, Kau CH. Orthodontic-orthognathic management of a patient with skeletal class II with bimaxillary protrusion, complicated by vertical maxillary excess: a multi-faceted case report of difficult treatment management issues. Int. Orthod., 2020, 18: 178-190.
CrossRef Google scholar
[33.]
Chung CH, Wong WW. Craniofacial growth in untreated skeletal class II subjects: a longitudinal study. Am. J. Orthod. Dentofac. Orthop., 2002, 122: 619-626.
CrossRef Google scholar
[34.]
Liu Y, et al.. The effect of orthodontic vertical control on the changes in the upper airway size and tongue and hyoid position in adult patients with hyperdivergent skeletal class II. BMC Oral. Health, 2022, 22. 532
CrossRef Google scholar
[35.]
Hourfar J, Kinzinger GSM, Frye L, Lisson JA. Outcome differences after orthodontic camouflage treatment in hypo- and hyperdivergent patients - a retrospective cephalometric investigation. Clin. Oral. Investig., 2023, 27: 7307-7318.
CrossRef Google scholar
[36.]
Liaw JJL, Park JH. Orthodontic considerations in hypodivergent craniofacial patterns. J. World Fed. Orthod., 2024, 13: 18-24
[37.]
Ning R, Guo J, Li Q, Martin D. Maxillary width and hard palate thickness in men and women with different vertical and sagittal skeletal patterns. Am. J. Orthod. Dentofac. Orthop., 2021, 159: 564-573.
CrossRef Google scholar
[38.]
Ciavarella D, et al.. Correlation between dental arch form and OSA severity in adult patients: an observational study. Prog. Orthod., 2023, 24. 19
CrossRef Google scholar
[39.]
Winiarska, N. et al. Anthropometry and current aesthetic concept of the lower third of the face and lips in caucasian adult population: a systematic review and meta-analysis. Aesthetic Plast. Surg. 48, 2353–2364 (2024).
[40.]
Perinetti G, Rosso L, Riatti R, Contardo L. Sagittal and vertical craniofacial growth pattern and timing of circumpubertal skeletal maturation: a multiple regression study. Biomed. Res. Int., 2016, 2016: 1728712.
CrossRef Google scholar
[41.]
Shakr S, Negm I, Saifeldin H. Evaluation of digital and manual orthodontic diagnostic setups in non-extraction cases using ABO model grading system: an in-vitro study. BMC Oral. Health, 2024, 24. 207
CrossRef Google scholar
[42.]
Glass TR, Tremont T, Martin CA, Ngan PW. A CBCT evaluation of root position in bone, long axis inclination and relationship to the WALA Ridge. Semin. Orthod., 2019, 25: 24-35.
CrossRef Google scholar
[43.]
Raposo R, Peleteiro B, Paco M, Pinho T. Orthodontic camouflage versus orthodontic-orthognathic surgical treatment in class II malocclusion: a systematic review and meta-analysis. Int. J. Oral. Maxillofac. Surg., 2018, 47: 445-455.
CrossRef Google scholar
[44.]
Formosa J, Zou M, Chung CH, Boucher NS, Li C. Mandibular alveolar bone thickness in untreated Class I subjects with different vertical skeletal patterns: a cone-beam computed tomography study. Angle Orthod., 2023, 93: 683-694.
CrossRef Google scholar
[45.]
Kostic, M. et al. Correlation theory of the maxillary central incisor, face and dental arch shape in the serbian population. Medicina (Kaunas) 59, 2142 (2023).
[46.]
Akyalcin S, Erdinc AE, Dincer B, Nanda RS. Do long-term changes in relative maxillary arch width affect buccal-corridor ratios in extraction and nonextraction treatment?. Am. J. Orthod. Dentofac. Orthop., 2011, 139: 356-361.
CrossRef Google scholar
[47.]
Moon CH, Park HK, Nam JS, Im JS, Baek SH. Relationship between vertical skeletal pattern and success rate of orthodontic mini-implants. Am. J. Orthod. Dentofac. Orthop., 2010, 138: 51-57.
CrossRef Google scholar
[48.]
Sangalli L, et al.. Proposed parameters of optimal central incisor positioning in orthodontic treatment planning: a systematic review. Korean J. Orthod., 2022, 52: 53-65.
CrossRef Google scholar
[49.]
Islam ZU, Shaikh AJ, Fida M. Dentoalveolar heights in vertical and sagittal facial patterns. J. Coll. Physicians Surg. Pak., 2016, 26: 753-757
[50.]
Linjawi AI, Afify AR, Baeshen HA, Birkhed D, Zawawi KH. Mandibular symphysis dimensions in different sagittal and vertical skeletal relationships. Saudi J. Biol. Sci., 2021, 28: 280-285.
CrossRef Google scholar
[51.]
Yan, X., Zhang, X., Chen, Y., Long, H. & Lai, W. Association of upper lip morphology characteristics with sagittal and vertical skeletal patterns: a cross sectional study. Diagnostics (Basel) 11, 1713 (2021).
[52.]
Krishnan, V. & Davidovitch, Z. E. In: Biological mechanisms of tooth movement, 1–15 (2021).
[53.]
Turley PK. Evolution of esthetic considerations in orthodontics. Am. J. Orthod. Dentofac. Orthop., 2015, 148: 374-379.
CrossRef Google scholar
[54.]
Zhou Q, et al.. Three dimensional quantitative study of soft tissue changes in nasolabial folds after orthodontic treatment in female adults. BMC Oral. Health, 2023, 23. 31
CrossRef Google scholar
[55.]
Alsowaidan MA, et al.. Airway obstruction as a cause of malocclusion: a systematic review. Pharmacophore, 2021, 12: 92-97.
CrossRef Google scholar
[56.]
Wang Q, Jia P, Anderson NK, Wang L, Lin J. Changes of pharyngeal airway size and hyoid bone position following orthodontic treatment of Class I bimaxillary protrusion. Angle Orthod., 2012, 82: 115-121.
CrossRef Google scholar
[57.]
Zhang J, Chen G, Li W, Xu T, Gao X. Upper airway changes after orthodontic extraction treatment in adults: a preliminary study using cone beam computed tomography. PLoS One, 2015, 10. e0143233
CrossRef Google scholar
[58.]
Rojo-Sanchis C, Almerich-Silla JM, Paredes-Gallardo V, Montiel-Company JM, Bellot-Arcis C. Impact of bimaxillary advancement surgery on the upper airway and on obstructive sleep apnea syndrome: a meta-analysis. Sci. Rep., 2018, 8. 5756
CrossRef Google scholar
[59.]
Grippaudo C, et al.. Association between oral habits, mouth breathing and malocclusion. Acta Otorhinolaryngol. Ital., 2016, 36: 386-394.
CrossRef Google scholar
[60.]
Koletsi D, Makou M, Pandis N. Effect of orthodontic management and orofacial muscle training protocols on the correction of myofunctional and myoskeletal problems in developing dentition. A systematic review and meta-analysis. Orthod. Craniofac. Res., 2018, 21: 202-215.
CrossRef Google scholar
[61.]
List T, Jensen RH. Temporomandibular disorders: old ideas and new concepts. Cephalalgia, 2017, 37: 692-704.
CrossRef Google scholar
[62.]
Miao MZ, et al.. Temporomandibular joint positional change accompanies post-surgical mandibular relapse-a long-term retrospective study among patients who underwent mandibular advancement. Orthod. Craniofac. Res., 2018, 21: 33-40.
CrossRef Google scholar
[63.]
Lai YC, Yap AU, Turp JC. Prevalence of temporomandibular disorders in patients seeking orthodontic treatment: a systematic review. J. Oral. Rehabil., 2020, 47: 270-280.
CrossRef Google scholar
[64.]
Wang M, et al.. Impact of occlusal contact pattern on dental stability and oromandibular system after orthodontic tooth movement in rats. Sci. Rep., 2023, 13. 22276
CrossRef Google scholar
[65.]
Alstad S, Zachrisson BU. Longitudinal study of periodontal condition associated with orthodontic treatment in adolescents. Am. J. Orthod., 1979, 76: 277-286.
CrossRef Google scholar
[66.]
Han S, et al.. Dehiscence and fenestration of skeletal Class III malocclusions with different vertical growth patterns in the anterior region: a cone-beam computed tomography study. Am. J. Orthod. Dentofac. Orthop., 2024, 165: 423-433.
CrossRef Google scholar
[67.]
Jepsen K, Sculean A, Jepsen S. Complications and treatment errors involving periodontal tissues related to orthodontic therapy. Periodontol 2000, 2023, 92: 135-158.
CrossRef Google scholar
[68.]
Xiang M, Hu B, Liu Y, Sun J, Song J. Changes in airway dimensions following functional appliances in growing patients with skeletal class II malocclusion: a systematic review and meta-analysis. Int. J. Pediatr. Otorhinolaryngol., 2017, 97: 170-180.
CrossRef Google scholar
[69.]
Huo B, Che X, Li X. Timing of early correction of mandibular hypoplasia in skeletal class II malocclusion: a review. J. Clin. Pediatr. Dent., 2023, 47: 11-20
[70.]
Tausche E, Luck O, Harzer W. Prevalence of malocclusions in the early mixed dentition and orthodontic treatment need. Eur. J. Orthod., 2004, 26: 237-244.
CrossRef Google scholar
[71.]
Elfeky HY, Fayed MS, Alhammadi MS, Soliman SAZ, El Boghdadi DM. Three-dimensional skeletal, dentoalveolar and temporomandibular joint changes produced by twin block functional appliance. J. Orofac. Orthop., 2018, 79: 245-258.
CrossRef Google scholar
[72.]
Mohamed AS, et al.. Three-dimensional evaluation of hyoid bone position in nasal and mouth breathing subjects with skeletal Class I, and Class II. BMC Oral. Health, 2022, 22. 228
CrossRef Google scholar
[73.]
Cha JY, et al.. Outcomes of early versus late treatment of severe class II high-angle patients. Am. J. Orthod. Dentofac. Orthop., 2019, 156: 375-382.
CrossRef Google scholar
[74.]
Gkantidis N, Halazonetis DJ, Alexandropoulos E, Haralabakis NB. Treatment strategies for patients with hyperdivergent class II division 1 malocclusion: is vertical dimension affected?. Am. J. Orthod. Dentofac. Orthop., 2011, 140: 346-355.
CrossRef Google scholar
[75.]
Galluccio, G. et al. Comparative evaluation of esthetic and structural aspects in class II functional therapy. A case-control retrospective study. Int. J. Environ. Res. Public Health 18, 6978 (2021).
[76.]
Sambataro S, et al.. Comparison of cephalometric changes in Class II growing patients with increased vertical dimension after high-pull and cervical headgear treatment. Eur. J. Paediatr. Dent., 2023, 24: 36-41
[77.]
Harari D, Redlich M, Miri S, Hamud T, Gross M. The effect of mouth breathing versus nasal breathing on dentofacial and craniofacial development in orthodontic patients. Laryngoscope, 2010, 120: 2089-2093.
CrossRef Google scholar
[78.]
Han SH, Park YS. Growth patterns and overbite depth indicators of long and short faces in Korean adolescents: revisited through mixed-effects analysis. Orthod. Craniofac. Res., 2019, 22: 38-45.
CrossRef Google scholar
[79.]
Hourfar J, Kinzinger GSM, Frye L, Lisson JA. Effects of fixed functional orthodontic treatment in hypodivergent and hyperdivergent class II patients-a retrospective cephalometric investigation. Clin. Oral. Investig., 2023, 27: 4773-4784.
CrossRef Google scholar
[80.]
Wang H, Jiang L, Yi Y, Li H, Lan T. Camouflage treatment guided by facial improvement in hyperdivergent skeletal class II malocclusion. Ann. Transl. Med, 2022, 10: 163.
CrossRef Google scholar
[81.]
Moresca AHK, et al.. Esthetic perception of facial profile changes in Class II patients treated with Herbst or Forsus appliances. Angle Orthod., 2020, 90: 571-577.
CrossRef Google scholar
[82.]
Liu A, et al.. Efficacy of a modified twin block appliance compared with the traditional twin block appliance in children with hyperdivergent mandibular retrognathia: protocol for a single-centre, single-blind, randomised controlled trial. BMJ Open, 2023, 13. e071959
CrossRef Google scholar
[83.]
Cai J, Min Z, Deng Y, Jing D, Zhao Z. Assessing the impact of occlusal plane rotation on facial aesthetics in orthodontic treatment: a machine learning approach. BMC Oral. Health, 2024, 24. 30
CrossRef Google scholar
[84.]
Sambataro S, et al.. Changes of occlusal plane in growing patients with increased vertical dimension during class II correction by using cervical headgear. J. Craniofac. Surg., 2020, 31: 172-177.
CrossRef Google scholar
[85.]
Picchi Comar L, Salomão PMA, Martines de Souza B, Magalhães AC. Dental erosion: an overview on definition, prevalence, diagnosis and therapy. Braz. Dent. Sci., 2013, 16: 6-17.
CrossRef Google scholar
[86.]
Harvold EP, Tomer BS, Vargervik K, Chierici G. Primate experiments on oral respiration. Am. J. Orthod., 1981, 79: 359-372.
CrossRef Google scholar
[87.]
Ishihara Y, Kuroda S, Sumiyoshi K, Takano-Yamamoto T, Yamashiro T. Extraction of the lateral incisors to treat maxillary protrusion: quantitative evaluation of the stomatognathic functions. Angle Orthod., 2013, 83: 341-354.
CrossRef Google scholar
[88.]
Perinetti G, Contardo L. Reliability of growth indicators and efficiency of functional treatment for skeletal class II malocclusion: current evidence and controversies. Biomed. Res. Int., 2017, 2017: 1367691.
CrossRef Google scholar
[89.]
Lee YJ, Park JT, Cha JY. Perioral soft tissue evaluation of skeletal class II division 1: a lateral cephalometric study. Am. J. Orthod. Dentofac. Orthop., 2015, 148: 405-413.
CrossRef Google scholar
[90.]
Talass MF, Talass L, Baker RC. Soft-tissue profile changes resulting from retraction of maxillary incisors. Am. J. Orthod. Dentofac. Orthop., 1987, 91: 385-394.
CrossRef Google scholar
[91.]
Alkadhi RM, Finkelman MD, Trotman CA, Kanavakis G. The role of lip thickness in upper lip response to sagittal change of incisor position. Orthod. Craniofac. Res., 2019, 22: 53-57.
CrossRef Google scholar
[92.]
Sun Q, et al.. Morphological changes of the anterior alveolar bone due to retraction of anterior teeth: a retrospective study. Head. Face Med., 2021, 17: 30.
CrossRef Google scholar
[93.]
Hatami A, Dreyer C. The extraction of first, second or third permanent molar teeth and its effect on the dentofacial complex. Aust. Dent. J., 2019, 64: 302-311.
CrossRef Google scholar
[94.]
Haque S, Sandler J, Cobourne MT, Bassett P, DiBiase AT. A retrospective study comparing the loss of anchorage following the extraction of maxillary first or second premolars during orthodontic treatment with fixed appliances in adolescent patients. J. Orthod., 2017, 44: 268-276.
CrossRef Google scholar
[95.]
Changsiripun C, Phusantisampan P. Attitudes of orthodontists and laypersons towards tooth extractions and additional anchorage devices. Prog. Orthod., 2017, 18. 19
CrossRef Google scholar
[96.]
Kinzinger GS, Diedrich PR. Biomechanics of a modified Pendulum appliance-theoretical considerations and in vitro analysis of the force systems. Eur. J. Orthod., 2007, 29: 1-7.
CrossRef Google scholar
[97.]
Byloff FK, Darendeliler MA, Clar E, Darendeliler A. Distal molar movement using the pendulum appliance. Part 2: the effects of maxillary molar root uprighting bends. Angle Orthod., 1997, 67: 261-270
[98.]
Antonarakis GS, Kiliaridis S. Maxillary molar distalization with noncompliance intramaxillary appliances in class II malocclusion. A systematic review. Angle Orthod., 2008, 78: 1133-1140.
CrossRef Google scholar
[99.]
Alyami B. Full single arch distalization in class II malocclusion using subzygomatic temporary anchorage devices: a case report. Saudi J. Oral. Sci., 2023, 10: 184-188.
CrossRef Google scholar
[100.]
Guo YN, et al.. Quantitative evaluation of vertical control in orthodontic camouflage treatment for skeletal class II with hyperdivergent facial type. Head. Face Med., 2024, 20: 31.
CrossRef Google scholar
[101.]
Deng JR, et al.. Evaluation of long-term stability of vertical control in hyperdivergent patients treated with temporary anchorage devices. Curr. Med. Sci., 2018, 38: 914-919.
CrossRef Google scholar
[102.]
Umemori M, Sugawara J, Mitani H, Nagasaka H, Kawamura H. Skeletal anchorage system for open-bite correction. Am. J. Orthod. Dentofac. Orthop., 1999, 115: 166-174.
CrossRef Google scholar
[103.]
Sarver DM. Interactions of hard tissues, soft tissues, and growth over time, and their impact on orthodontic diagnosis and treatment planning. Am. J. Orthod. Dentofac. Orthop., 2015, 148: 380-386.
CrossRef Google scholar
[104.]
Freeman CS, McNamara JA Jr., Baccetti T, Franchi L, Graff TW. Treatment effects of the bionator and high-pull facebow combination followed by fixed appliances in patients with increased vertical dimensions. Am. J. Orthod. Dentofac. Orthop., 2007, 131: 184-195.
CrossRef Google scholar
[105.]
Kuhn RJ. Control of anterior vertical dimension and proper selection of extraoral anchorage. Angle Orthod., 1968, 38: 340-349
[106.]
LaHaye MB, Buschang PH, Alexander RG, Boley JC. Orthodontic treatment changes of chin position in Class II division 1 patients. Am. J. Orthod. Dentofac. Orthop., 2006, 130: 732-741.
CrossRef Google scholar
[107.]
Ruslin M, et al.. One-year stability of the mandibular advancement and counterclockwise rotation for correction of the skeletal class II malocclusion and high mandibular plane angle: dental and skeletal aspect. Biomed. J., 2022, 45: 206-214.
CrossRef Google scholar
[108.]
Liou EJ, Chang PM. Apical root resorption in orthodontic patients with en-masse maxillary anterior retraction and intrusion with miniscrews. Am. J. Orthod. Dentofac. Orthop., 2010, 137: 207-212.
CrossRef Google scholar
[109.]
Peng J, Lei Y, Liu Y, Zhang B, Chen J. Effectiveness of micro-implant in vertical control during orthodontic extraction treatment in class II adults and adolescents after pubertal growth peak: a systematic review and meta-analysis. Clin. Oral. Investig., 2023, 27: 2149-2162.
CrossRef Google scholar
[110.]
Sendyk M, et al.. Three-dimensional evaluation of dental decompensation and mandibular symphysis remodeling on orthodontic-surgical treatment of class III malocclusion. Am. J. Orthod. Dentofac. Orthop., 2021, 159: 175-183.e173.
CrossRef Google scholar
[111.]
Möhlhenrich SC, et al.. Effects of different surgical techniques and displacement distances on the soft tissue profile via orthodontic-orthognathic treatment of class II and class III malocclusions. Head. Face Med., 2021, 17: 13.
CrossRef Google scholar
[112.]
Tanikawa C, Yamashiro T. Development of novel artificial intelligence systems to predict facial morphology after orthognathic surgery and orthodontic treatment in Japanese patients. Sci. Rep., 2021, 11. 15853
CrossRef Google scholar
[113.]
Kaplan PA, Tu HK, Koment MA, Bennion JW, Ruskin JD. Radiography after orthognathic surgery. Part I. Normal appearance. Radiology, 1988, 167: 191-194.
CrossRef Google scholar
[114.]
Prinsell JR. Maxillomandibular advancement surgery in a site-specific treatment approach for obstructive sleep apnea in 50 consecutive patients. Chest, 1999, 116: 1519-1529.
CrossRef Google scholar
[115.]
Nachmani A, et al.. Differences in craniofacial morphology between platybasic and nonplatybasic patients with velopharyngeal dysfunction and control subjects. Am. J. Orthod. Dentofac. Orthop., 2022, 162: e5-e16.
CrossRef Google scholar
[116.]
Cao J, et al.. Reconstruction of dentomaxillofacial deformity secondary to mandibular defect using concomitant orthognathic surgery and fibula free flap. Plast. Reconstr. Surg., 2023, 151: 179-183
[117.]
Muftuoglu O, et al.. Long-term evaluation of masseter muscle activity, dimensions, and elasticity after orthognathic surgery in skeletal class III patients. Clin. Oral. Investig., 2023, 27: 3855-3861.
CrossRef Google scholar
[118.]
Lee JY, Hung TY, Rieko Y, Fang CY. Correcting protruding maxillary appearance through one-piece Le fort I osteotomy without premolar extraction. J. Dent. Sci., 2023, 18: 1926-1928.
CrossRef Google scholar
[119.]
van Bakelen NB, et al.. Comparison of biodegradable and titanium fixation systems in maxillofacial surgery: a two-year multi-center randomized controlled trial. J. Dent. Res, 2013, 92: 1100-1105.
CrossRef Google scholar
[120.]
Rohner D, Yeow V, Hammer B. Endoscopically assisted Le Fort I osteotomy. J. Craniomaxillofac. Surg., 2001, 29: 360-365.
CrossRef Google scholar
[121.]
Chen, C. M. et al. Changes in facial profile after modified anterior maxillary subapical osteotomy. J. Pers. Med. 12, 508 (2022).
[122.]
Arnett GW, Trevisiol L, Grendene E, McLaughlin RP, D’Agostino A. Combined orthodontic and surgical open bite correction. Angle Orthod., 2022, 92: 161-172.
CrossRef Google scholar
[123.]
Abdel-Moniem Barakat A, Abou-ElFetouh A, Hakam MM, El-Hawary H, Abdel-Ghany KM. Clinical and radiographic evaluation of a computer-generated guiding device in bilateral sagittal split osteotomies. J. Craniomaxillofac. Surg., 2014, 42: e195-e203.
CrossRef Google scholar
[124.]
Yoshioka I, et al.. Criteria and limitations for selecting a sagittal split ramus osteotomy for patients with skeletal mandibular prognathism and open bite. Oral. Surg. Oral. Med Oral. Pathol. Oral. Radio., 2013, 115: 455-465.
CrossRef Google scholar
[125.]
Suda N, Tominaga N, Niinaka Y, Amagasa T, Moriyama K. Orthognathic treatment for a patient with facial asymmetry associated with unilateral scissors-bite and a collapsed mandibular arch. Am. J. Orthod. Dentofac. Orthop., 2012, 141: 94-104.
CrossRef Google scholar
[126.]
Seo YJ, Lin L, Kim SH, Chung KR, Nelson G. Strategic camouflage treatment of skeletal Class III malocclusion (mandibular prognathism) using bone-borne rapid maxillary expansion and mandibular anterior subapical osteotomy. Am. J. Orthod. Dentofac. Orthop., 2016, 149: 114-126.
CrossRef Google scholar
[127.]
Foushee DG, Moriarty JD, Simpson DM. Effects of mandibular orthognathic treatment on mucogingival tissues. J. Periodontol., 1985, 56: 727-733.
CrossRef Google scholar
[128.]
Burk JL, Newby NW, Branham GB, Provencher RF. Surgical correction of pseudoankylosis and microgenia: report of case. J. Am. Dent. Assoc., 1977, 94: 1173-1177.
CrossRef Google scholar
[129.]
Yao K, et al.. Effect of surgery-first orthognathic approach on oral health-related quality of life. Angle Orthod., 2020, 90: 723-733.
CrossRef Google scholar
[130.]
Bichu YM, et al.. Insights into concepts, protocols, and evidence of surgery-first orthognathic approach– the journey so far. Semin. Orthod., 2022, 28: 247-257.
CrossRef Google scholar
[131.]
Wei H, Liu Z, Zang J, Wang X. Surgery-first/early-orthognathic approach may yield poorer postoperative stability than conventional orthodontics-first approach: a systematic review and meta-analysis. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol., 2018, 126: 107-116.
CrossRef Google scholar
[132.]
Barone S, Morice A, Picard A, Giudice A. Surgery-first orthognathic approach vs conventional orthognathic approach: a systematic review of systematic reviews. J. Stomatol. Oral Maxillofac. Surg., 2021, 122: 162-172.
CrossRef Google scholar
[133.]
Shathi FF, et al.. Evaluation of mandibular positional changes after orthognathic surgery in skeletal class II and class III surgery-first approach patients. J. Stomatol Oral. Maxillofac. Surg., 2022, 123: 677-684.
CrossRef Google scholar
Funding
National Clinical Key Specialty Project of China Nos. GJLCZDZK-2023-01, Shanghai Top Priority Research Center Project Nos. 2023ZZ02009, National Natural Science Foundations of China Nos. 82230030, Clinical Innovation Project of Shanghai Shenkang Hospital Development Center Nos. SHDC12021108 and Angelalign Scientific Research Fund No. EARD20220725046,

Accesses

Citations

Detail

Sections
Recommended

/