The impact of aging on neutrophil functions and the contribution to periodontitis

Zi Wang, Anish Saxena, Wenbo Yan, Silvia M. Uriarte, Rafael Siqueira, Xin Li

International Journal of Oral Science ›› 2025, Vol. 17 ›› Issue (1) : 10.

International Journal of Oral Science ›› 2025, Vol. 17 ›› Issue (1) : 10. DOI: 10.1038/s41368-024-00332-w
Review Article

The impact of aging on neutrophil functions and the contribution to periodontitis

Author information +
History +

Abstract

The increasing aging population and aging-associated diseases have become a global issue for decades. People over 65 show an increased prevalence and greater severity of periodontitis, which poses threats to overall health. Studies have demonstrated a significant association between aging and the dysfunction of neutrophils, critical cells in the early stages of periodontitis, and their crosstalk with macrophages and T and B lymphocytes to establish the periodontal lesion. Neutrophils differentiate and mature in the bone marrow before entering the circulation; during an infection, they are recruited to infected tissues guided by the signal from chemokines and cytokines to eliminate invading pathogens. Neutrophils are crucial in maintaining a balanced response between host and microbes to prevent periodontal diseases in periodontal tissues. The impacts of aging on neutrophils’ chemotaxis, anti-microbial function, cell activation, and lifespan result in impaired neutrophil functions and excessive neutrophil activation, which could influence periodontitis course. We summarize the roles of neutrophils in periodontal diseases and the aging-related impacts on neutrophil functional responses. We also explore the underlying mechanisms that can contribute to periodontitis manifestation in aging. This review could help us better understand the pathogenesis of periodontitis, which could offer novel therapeutic targets for periodontitis.

Cite this article

Download citation ▾
Zi Wang, Anish Saxena, Wenbo Yan, Silvia M. Uriarte, Rafael Siqueira, Xin Li. The impact of aging on neutrophil functions and the contribution to periodontitis. International Journal of Oral Science, 2025, 17(1): 10 https://doi.org/10.1038/s41368-024-00332-w

References

[1.]
Clark D, Kotronia E, Ramsay SE. Frailty, aging, and periodontal disease: basic biologic considerations. Periodontology 2000, 2021, 87: 143-156
CrossRef Google scholar
[2.]
Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat. Rev. Dis. Prim., 2017, 3: 17038
CrossRef Google scholar
[3.]
Laudenbach JM, Simon Z. Common dental and periodontal diseases: evaluation and management. Med Clin. North Am., 2014, 98: 1239-1260
CrossRef Google scholar
[4.]
Hajishengallis G, Chavakis T, Lambris JD. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontology 2000, 2020, 84: 14-34
CrossRef Google scholar
[5.]
Babay N, Alshehri F, Al Rowis R. Majors highlights of the new 2017 classification of periodontal and peri-implant diseases and conditions. Saudi Dent. J., 2019, 31: 303-305
CrossRef Google scholar
[6.]
Bui FQ, et al.. Association between periodontal pathogens and systemic disease. Biomed. J., 2019, 42: 27-35
CrossRef Google scholar
[7.]
Nwizu N, Wactawski-Wende J, Genco RJ. Periodontal disease and cancer: epidemiologic studies and possible mechanisms. Periodontology 2000, 2020, 83: 213-233
CrossRef Google scholar
[8.]
Hajishengallis G. Aging and its impact on innate immunity and inflammation: implications for periodontitis. J. Oral Biosci., 2014, 56: 30-37
CrossRef Google scholar
[9.]
Clark D, Radaic A, Kapila Y. Cellular mechanisms of inflammaging and periodontal disease. Front. Dent. Med., 2022, 3: 844865
CrossRef Google scholar
[10.]
Scott DA, Krauss J. Neutrophils in periodontal inflammation. Front. Oral Biol., 2012, 15: 56-83
CrossRef Google scholar
[11.]
Uriarte SM, Edmisson JS, Jimenez-Flores E. Human neutrophils and oral microbiota: a constant tug-of-war between a harmonious and a discordant coexistence. Immunol. Rev., 2016, 273: 282-298
CrossRef Google scholar
[12.]
Hajishengallis G, Chavakis T, Hajishengallis E, Lambris JD. Neutrophil homeostasis and inflammation: novel paradigms from studying periodontitis. J. Leukoc. Biol., 2015, 98: 539-548
CrossRef Google scholar
[13.]
Jiao Y, Hasegawa M, Inohara N. Emerging roles of immunostimulatory oral bacteria in periodontitis development. Trends Microbiol., 2014, 22: 157-163
CrossRef Google scholar
[14.]
Simmons SR, Bhalla M, Herring SE, Tchalla EYI, Bou Ghanem EN. Older but not wiser: the age-driven changes in neutrophil responses during pulmonary infections. Infect. Immun., 2021, 89: e00653-20
CrossRef Google scholar
[15.]
Chen MM, Palmer JL, Plackett TP, Deburghgraeve CR, Kovacs EJ. Age-related differences in the neutrophil response to pulmonary pseudomonas infection. Exp. Gerontol., 2014, 54: 42-46
CrossRef Google scholar
[16.]
Van Avondt K, et al.. Neutrophils in aging and aging-related pathologies. Immunol. Rev., 2023, 314: 357-375
CrossRef Google scholar
[17.]
Sauce D, et al.. Reduced oxidative burst by primed neutrophils in the elderly individuals is associated with increased levels of the CD16bright/CD62Ldim immunosuppressive subset. J. Gerontol. A Biol. Sci. Med. Sci., 2017, 72: 163-172
CrossRef Google scholar
[18.]
Cekici A, Kantarci A, Hasturk H, Van Dyke TE. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000, 2014, 64: 57-80
CrossRef Google scholar
[19.]
Hajishengallis E, Hajishengallis G. Neutrophil homeostasis and periodontal health in children and adults. J. Dent. Res., 2014, 93: 231-237
CrossRef Google scholar
[20.]
Chapple ILC, Hirschfeld J, Kantarci A, Wilensky A, Shapira L. The role of the host-neutrophil biology. Periodontology 2000, 2003, 00: 1-47
[21.]
Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J. Immunol., 2004, 172: 2731-2738
CrossRef Google scholar
[22.]
Iwasaki H, Akashi K. Myeloid lineage commitment from the hematopoietic stem cell. Immunity, 2007, 26: 726-740
CrossRef Google scholar
[23.]
Heath V, et al.. C/EBPalpha deficiency results in hyperproliferation of hematopoietic progenitor cells and disrupts macrophage development in vitro and in vivo. Blood, 2004, 104: 1639-1647
CrossRef Google scholar
[24.]
Laslo P, et al.. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell, 2006, 126: 755-766
CrossRef Google scholar
[25.]
Ai Z, Udalova IA. Transcriptional regulation of neutrophil differentiation and function during inflammation. J. Leukoc. Biol., 2020, 107: 419-430
CrossRef Google scholar
[26.]
Hidalgo A, Chilvers ER, Summers C, Koenderman L. The neutrophil life cycle. Trends Immunol., 2019, 40: 584-597
CrossRef Google scholar
[27.]
Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer, 2016, 16: 431-446
CrossRef Google scholar
[28.]
Hong CW. Current understanding in neutrophil differentiation and heterogeneity. Immune Netw., 2017, 17: 298-306
CrossRef Google scholar
[29.]
Overbeeke C, Tak T, Koenderman L. The journey of neutropoiesis: how complex landscapes in bone marrow guide continuous neutrophil lineage determination. Blood, 2022, 139: 2285-2293
CrossRef Google scholar
[30.]
Calzetti F, Finotti G, Cassatella MA. Current knowledge on the early stages of human neutropoiesis. Immunol. Rev., 2023, 314: 111-124
CrossRef Google scholar
[31.]
Calzetti F, et al.. CD66b(−)CD64(dim)CD115(−) cells in the human bone marrow represent neutrophil-committed progenitors. Nat. Immunol., 2022, 23: 679-691
CrossRef Google scholar
[32.]
Signoretto I, et al.. Human CD34+/dim neutrophil-committed progenitors do not differentiate into neutrophil-like CXCR1+CD14+CD16− monocytes in vitro. J. Leukoc. Biol., 2024, 115: 695-705
CrossRef Google scholar
[33.]
Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types?. Front. Physiol., 2018, 9: 113
CrossRef Google scholar
[34.]
Suratt BT, et al.. Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood, 2004, 104: 565-571
CrossRef Google scholar
[35.]
Petrides PE, Dittmann KH. How do normal and leukemic white blood cells egress from the bone marrow? Morphological facts and biochemical riddles. Blut, 1990, 61: 3-13
CrossRef Google scholar
[36.]
Evrard M, et al.. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity, 2018, 48: 364-379.e368
CrossRef Google scholar
[37.]
Aroca-Crevillen A, Adrover JM, Hidalgo A. Circadian features of neutrophil biology. Front. Immunol., 2020, 11: 576
CrossRef Google scholar
[38.]
Ovadia S, Ozcan A, Hidalgo A. The circadian neutrophil, inside-out. J. Leukoc. Biol., 2023, 113: 555-566
CrossRef Google scholar
[39.]
Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC. G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity, 2002, 17: 413-423
CrossRef Google scholar
[40.]
Mendez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature, 2008, 452: 442-447
CrossRef Google scholar
[41.]
Adrover JM, Nicolas-Avila JA, Hidalgo A. Aging: a temporal dimension for neutrophils. Trends Immunol., 2016, 37: 334-345
CrossRef Google scholar
[42.]
Adrover JM, et al.. A neutrophil timer coordinates immune defense and vascular protection. Immunity, 2019, 50: 390-402.e310
CrossRef Google scholar
[43.]
Adrover JM, et al.. Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation. Nat. Immunol., 2020, 21: 135-144
CrossRef Google scholar
[44.]
Kolaczkowska E. The older the faster: aged neutrophils in inflammation. Blood, 2016, 128: 2280-2282
CrossRef Google scholar
[45.]
Sollberger G, Tilley DO, Zychlinsky A. Neutrophil extracellular traps: the biology of chromatin externalization. Dev. Cell, 2018, 44: 542-553
CrossRef Google scholar
[46.]
Casanova-Acebes M, et al.. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell, 2013, 153: 1025-1035
CrossRef Google scholar
[47.]
Greenlee-Wacker MC. Clearance of apoptotic neutrophils and resolution of inflammation. Immunol. Rev., 2016, 273: 357-370
CrossRef Google scholar
[48.]
Yamada M, et al.. The increase in surface CXCR4 expression on lung extravascular neutrophils and its effects on neutrophils during endotoxin-induced lung injury. Cell. Mol. Immunol., 2011, 8: 305-314
CrossRef Google scholar
[49.]
Stark MA, et al.. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity, 2005, 22: 285-294
CrossRef Google scholar
[50.]
Lawrence SM, Corriden R, Nizet V. How neutrophils meet their end. Trends Immunol., 2020, 41: 531-544
CrossRef Google scholar
[51.]
Summers C, et al.. Neutrophil kinetics in health and disease. Trends Immunol., 2010, 31: 318-324
CrossRef Google scholar
[52.]
Chang SF, et al.. LPS-induced G-CSF expression in macrophages is mediated by ERK2, but not ERK1. PLoS ONE, 2015, 10: e0129685
CrossRef Google scholar
[53.]
Vellenga E, Rambaldi A, Ernst TJ, Ostapovicz D, Griffin JD. Independent regulation of M-CSF and G-CSF gene expression in human monocytes. Blood, 1988, 71: 1529-1532
CrossRef Google scholar
[54.]
Whitfield C, Trent MS. Biosynthesis and export of bacterial lipopolysaccharides. Annu. Rev. Biochem., 2014, 83: 99-128
CrossRef Google scholar
[55.]
Dahlen GG. Black-pigmented gram-negative anaerobes in periodontitis. FEMS Immunol. Med. Microbiol., 1993, 6: 181-192
CrossRef Google scholar
[56.]
Baker PJ. The role of immune responses in bone loss during periodontal disease. Microbes Infect., 2000, 2: 1181-1192
CrossRef Google scholar
[57.]
Thunstrom Salzer A, et al.. Assessment of neutrophil chemotaxis upon G-CSF treatment of healthy stem cell donors and in allogeneic transplant recipients. Front. Immunol., 2018, 9: 1968
CrossRef Google scholar
[58.]
Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG. PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood, 1996, 88: 1234-1247
CrossRef Google scholar
[59.]
Eyles JL, et al.. A key role for G-CSF-induced neutrophil production and trafficking during inflammatory arthritis. Blood, 2008, 112: 5193-5201
CrossRef Google scholar
[60.]
Kohler A, et al.. G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood, 2011, 117: 4349-4357
CrossRef Google scholar
[61.]
Kim HK, De La Luz Sierra M, Williams CK, Gulino AV, Tosato G. G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells. Blood, 2006, 108: 812-820
CrossRef Google scholar
[62.]
Havens AM, et al.. Stromal-derived factor-1alpha (CXCL12) levels increase in periodontal disease. J. Periodontol., 2008, 79: 845-853
CrossRef Google scholar
[63.]
Greer A, et al.. Site-specific neutrophil migration and CXCL2 expression in periodontal tissue. J. Dent. Res., 2016, 95: 946-952
CrossRef Google scholar
[64.]
Tsukamoto Y, et al.. Role of the junctional epithelium in periodontal innate defense and homeostasis. J. Periodontal Res., 2012, 47: 750-757
CrossRef Google scholar
[65.]
Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int. J. Oral Sci., 2019, 11: 30
CrossRef Google scholar
[66.]
Mikolajczyk-Pawlinska J, Travis J, Potempa J. Modulation of interleukin-8 activity by gingipains from Porphyromonas gingivalis: implications for pathogenicity of periodontal disease. FEBS Lett., 1998, 440: 282-286
CrossRef Google scholar
[67.]
Finoti LS, et al.. Association between interleukin-8 levels and chronic periodontal disease: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore), 2017, 96: e6932
CrossRef Google scholar
[68.]
Zenobia C, et al.. Commensal bacteria-dependent select expression of CXCL2 contributes to periodontal tissue homeostasis. Cell. Microbiol., 2013, 15: 1419-1426
CrossRef Google scholar
[69.]
Bainbridge B, et al.. Role of Porphyromonas gingivalis phosphoserine phosphatase enzyme SerB in inflammation, immune response, and induction of alveolar bone resorption in rats. Infect. Immun., 2010, 78: 4560-4569
CrossRef Google scholar
[70.]
Lee WL, Harrison RE, Grinstein S. Phagocytosis by neutrophils. Microbes Infect., 2003, 5: 1299-1306
CrossRef Google scholar
[71.]
Gierlikowska B, Stachura A, Gierlikowski W, Demkow U. Phagocytosis, degranulation and extracellular traps release by neutrophils—the current knowledge, pharmacological modulation and future prospects. Front. Pharm., 2021, 12: 666732
CrossRef Google scholar
[72.]
Naish E, et al.. The formation and function of the neutrophil phagosome. Immunol. Rev., 2023, 314: 158-180
CrossRef Google scholar
[73.]
Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front. Cell. Infect. Microbiol., 2017, 7: 373
CrossRef Google scholar
[74.]
Jayaprakash K, Demirel I, Khalaf H, Bengtsson T. The role of phagocytosis, oxidative burst and neutrophil extracellular traps in the interaction between neutrophils and the periodontal pathogen Porphyromonas gingivalis. Mol. Oral Microbiol., 2015, 30: 361-375
CrossRef Google scholar
[75.]
Vincents B, et al.. Cleavage of IgG1 and IgG3 by gingipain K from Porphyromonas gingivalis may compromise host defense in progressive periodontitis. FASEB J., 2011, 25: 3741-3750
CrossRef Google scholar
[76.]
Olsen I, Hajishengallis G. Major neutrophil functions subverted by Porphyromonas gingivalis. J. Oral Microbiol., 2016, 8: 30936
CrossRef Google scholar
[77.]
Asif K, Kothiwale SV. Phagocytic activity of peripheral blood and crevicular phagocytes in health and periodontal disease. J. Indian Soc. Periodontol., 2010, 14: 8-11
CrossRef Google scholar
[78.]
Carvalho RP, Mesquita JS, Bonomo A, Elsas PX, Colombo AP. Relationship of neutrophil phagocytosis and oxidative burst with the subgingival microbiota of generalized aggressive periodontitis. Oral Microbiol. Immunol., 2009, 24: 124-132
CrossRef Google scholar
[79.]
Kimura S, Yonemura T, Hiraga T, Okada H. Flow cytometric evaluation of phagocytosis by peripheral blood polymorphonuclear leucocytes in human periodontal diseases. Arch. Oral Biol., 1992, 37: 495-501
CrossRef Google scholar
[80.]
Cainciola LJ, Genco RJ, Patters MR, McKenna J, van Oss CJ. Defective polymorphonuclear leukocyte function in a human periodontal disease. Nature, 1977, 265: 445-447
CrossRef Google scholar
[81.]
Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect., 2003, 5: 1317-1327
CrossRef Google scholar
[82.]
Eichelberger KR, Goldman WE. Manipulating neutrophil degranulation as a bacterial virulence strategy. PLoS Pathog., 2020, 16: e1009054
CrossRef Google scholar
[83.]
Borregaard N, et al.. Human neutrophil granules and secretory vesicles. Eur. J. Haematol., 1993, 51: 187-198
CrossRef Google scholar
[84.]
Allen LH, Criss AK. Cell intrinsic functions of neutrophils and their manipulation by pathogens. Curr. Opin. Immunol., 2019, 60: 124-129
CrossRef Google scholar
[85.]
Ozuna H, Uriarte SM, Demuth DR. The Hunger Games: Aggregatibacter actinomycetemcomitans exploits human neutrophils as an epinephrine source for survival. Front. Immunol., 2021, 12: 707096
CrossRef Google scholar
[86.]
Johansson A, Claesson R, Hanstrom L, Sandstrom G, Kalfas S. Polymorphonuclear leukocyte degranulation induced by leukotoxin from Actinobacillus actinomycetemcomitans. J. Periodontal Res., 2000, 35: 85-92
CrossRef Google scholar
[87.]
Armstrong CL, et al.. Filifactor alocis promotes neutrophil degranulation and chemotactic activity. Infect. Immun., 2016, 84: 3423-3433
CrossRef Google scholar
[88.]
Nicu EA, Rijkschroeff P, Wartewig E, Nazmi K, Loos BG. Characterization of oral polymorphonuclear neutrophils in periodontitis patients: a case-control study. BMC Oral Health, 2018, 18 149
CrossRef Google scholar
[89.]
Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol., 2018, 18: 134-147
CrossRef Google scholar
[90.]
Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol., 2010, 191: 677-691
CrossRef Google scholar
[91.]
Lood C, et al.. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med, 2016, 22: 146-153
CrossRef Google scholar
[92.]
Sollberger G, et al.. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol., 2018, 3: eaar6689
CrossRef Google scholar
[93.]
Fuchs TA, et al.. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol., 2007, 176: 231-241
CrossRef Google scholar
[94.]
Brinkmann V, et al.. Neutrophil extracellular traps kill bacteria. Science, 2004, 303: 1532-1535
CrossRef Google scholar
[95.]
Pilsczek FH, et al.. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J. Immunol., 2010, 185: 7413-7425
CrossRef Google scholar
[96.]
Yipp BG, et al.. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med., 2012, 18: 1386-1393
CrossRef Google scholar
[97.]
Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ., 2009, 16: 1438-1444
CrossRef Google scholar
[98.]
Clark SR, et al.. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med., 2007, 13: 463-469
CrossRef Google scholar
[99.]
Oehmcke S, Morgelin M, Herwald H. Activation of the human contact system on neutrophil extracellular traps. J. Innate Immun., 2009, 1: 225-230
CrossRef Google scholar
[100.]
Branzk N, et al.. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol., 2014, 15: 1017-1025
CrossRef Google scholar
[101.]
Mikolai C, et al.. Neutrophils exhibit an individual response to different oral bacterial biofilms. J. Oral Microbiol., 2020, 13 1856565
CrossRef Google scholar
[102.]
Vitkov L, Klappacher M, Hannig M, Krautgartner WD. Extracellular neutrophil traps in periodontitis. J. Periodontal Res., 2009, 44: 664-672
CrossRef Google scholar
[103.]
Hirschfeld J, White PC, Milward MR, Cooper PR, Chapple ILC. Modulation of neutrophil extracellular trap and reactive oxygen species release by periodontal bacteria. Infect. Immun., 2017, 85: e00297-17
CrossRef Google scholar
[104.]
Vitkov L, Hartl D, Minnich B, Hannig M. Janus-faced neutrophil extracellular traps in periodontitis. Front. Immunol., 2017, 8: 1404
CrossRef Google scholar
[105.]
Medara N, et al.. Peripheral neutrophil phenotypes during management of periodontitis. J. Periodontal Res., 2021, 56: 58-68
CrossRef Google scholar
[106.]
Kamp VM, et al.. Human suppressive neutrophils CD16bright/CD62Ldim exhibit decreased adhesion. J. Leukoc. Biol., 2012, 92: 1011-1020
CrossRef Google scholar
[107.]
Figueredo CM, Fischer RG, Gustafsson A. Aberrant neutrophil reactions in periodontitis. J. Periodontol., 2005, 76: 951-955
CrossRef Google scholar
[108.]
Hiyoshi T, et al.. Neutrophil elastase aggravates periodontitis by disrupting gingival epithelial barrier via cleaving cell adhesion molecules. Sci. Rep., 2022, 12 8159
CrossRef Google scholar
[109.]
Magan-Fernandez A, et al.. Neutrophil extracellular traps in periodontitis. Cells, 2020, 9: 1494
CrossRef Google scholar
[110.]
Hirschfeld J, et al.. Neutrophil extracellular trap formation in supragingival biofilms. Int. J. Med. Microbiol., 2015, 305: 453-463
CrossRef Google scholar
[111.]
White P, et al.. Peripheral blood neutrophil extracellular trap production and degradation in chronic periodontitis. J. Clin. Periodontol., 2016, 43: 1041-1049
CrossRef Google scholar
[112.]
Wang J, et al.. The role of neutrophil extracellular traps in periodontitis. Front. Cell. Infect. Microbiol., 2021, 11 639144
CrossRef Google scholar
[113.]
Doke M, et al.. Nucleases from Prevotella intermedia can degrade neutrophil extracellular traps. Mol. Oral. Microbiol., 2017, 32: 288-300
CrossRef Google scholar
[114.]
Berends ET, et al.. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J. Innate Immun., 2010, 2: 576-586
CrossRef Google scholar
[115.]
Cooper PR, Palmer LJ, Chapple IL. Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe?. Periodontology 2000, 2013, 63: 165-197
CrossRef Google scholar
[116.]
Kim TS, et al.. Neutrophil extracellular traps and extracellular histones potentiate IL-17 inflammation in periodontitis. J. Exp. Med., 2023, 220: e20221751
CrossRef Google scholar
[117.]
Guilherme Neto JL, et al.. Neutrophil extracellular traps aggravate apical periodontitis by stimulating osteoclast formation. J. Endod., 2023, 49: 1514-1521
CrossRef Google scholar
[118.]
Hajishengallis G, Chavakis T. DEL-1-regulated immune plasticity and inflammatory disorders. Trends Mol. Med., 2019, 25: 444-459
CrossRef Google scholar
[119.]
Eskan MA, et al.. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat. Immunol., 2012, 13: 465-473
CrossRef Google scholar
[120.]
Zhang CY, et al.. Nanoparticle-induced neutrophil apoptosis increases survival in sepsis and alleviates neurological damage in stroke. Sci. Adv., 2019, 5 eaax7964
CrossRef Google scholar
[121.]
Miralda I, Vashishta A, Rogers MN, Lamont RJ, Uriarte SM. The emerging oral pathogen, Filifactor alocis, extends the functional lifespan of human neutrophils. Mol. Microbiol., 2022, 117: 1340-1351
CrossRef Google scholar
[122.]
Huang J, Cai X, Ou Y, Zhou Y, Wang Y. Resolution of inflammation in periodontitis: a review. Int. J. Clin. Exp. Pathol., 2018, 11: 4283-4295
[123.]
Li Z, et al.. Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology, 2021, 22: 165-187
CrossRef Google scholar
[124.]
Guo J, et al.. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct. Target Ther., 2022, 7: 391
CrossRef Google scholar
[125.]
Holmes A, Finger C, Morales-Scheihing D, Lee J, McCullough LD. Gut dysbiosis and age-related neurological diseases; an innovative approach for therapeutic interventions. Transl. Res., 2020, 226: 39-56
CrossRef Google scholar
[126.]
Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol., 2018, 15: 505-522
CrossRef Google scholar
[127.]
Eke PI, et al.. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J. Dent. Res., 2012, 91: 914-920
CrossRef Google scholar
[128.]
Billings M, et al.. Age-dependent distribution of periodontitis in two countries: findings from NHANES 2009 to 2014 and SHIP-TREND 2008 to 2012. J. Periodontol., 2018, 89(Suppl. 1): S140-S158
[129.]
Rossi DJ, et al.. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA, 2005, 102: 9194-9199
CrossRef Google scholar
[130.]
Dykstra B, Olthof S, Schreuder J, Ritsema M, de Haan G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med, 2011, 208: 2691-2703
CrossRef Google scholar
[131.]
Valiathan R, Ashman M, Asthana D. Effects of ageing on the immune system: infants to elderly. Scand. J. Immunol., 2016, 83: 255-266
CrossRef Google scholar
[132.]
Chatta GS, et al.. Hematopoietic progenitors and aging: alterations in granulocytic precursors and responsiveness to recombinant human G-CSF, GM-CSF, and IL-3. J. Gerontol., 1993, 48: M207-M212
CrossRef Google scholar
[133.]
Chatta GS, Price TH, Stratton JR, Dale DC. Aging and marrow neutrophil reserves. J. Am. Geriatr. Soc., 1994, 42: 77-81
CrossRef Google scholar
[134.]
Serre-Miranda C, et al.. Age-related sexual dimorphism on the longitudinal progression of blood immune cells in BALB/cByJ mice. J. Gerontol. A Biol. Sci. Med. Sci., 2022, 77: 883-891
CrossRef Google scholar
[135.]
Gullotta GS, et al.. Age-induced alterations of granulopoiesis generate atypical neutrophils that aggravate stroke pathology. Nat. Immunol., 2023, 24: 925-940
CrossRef Google scholar
[136.]
McLaughlin B, O’Malley K, Cotter TG. Age-related differences in granulocyte chemotaxis and degranulation. Clin. Sci. (Lond.), 1986, 70: 59-62
CrossRef Google scholar
[137.]
Brubaker AL, Rendon JL, Ramirez L, Choudhry MA, Kovacs EJ. Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. J. Immunol., 2013, 190: 1746-1757
CrossRef Google scholar
[138.]
Gomez CR, et al.. Advanced age exacerbates the pulmonary inflammatory response after lipopolysaccharide exposure. Crit. Care Med., 2007, 35: 246-251
CrossRef Google scholar
[139.]
Sapey E, et al.. Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward targeted treatments for immunosenescence. Blood, 2014, 123: 239-248
CrossRef Google scholar
[140.]
Fulop, et al.. Changes in apoptosis of human polymorphonuclear granulocytes with aging. Mech. Ageing Dev., 1997, 96: 15-34
CrossRef Google scholar
[141.]
Hazeldine J, et al.. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell, 2014, 13: 690-698
CrossRef Google scholar
[142.]
Ogawa K, Suzuki K, Okutsu M, Yamazaki K, Shinkai S. The association of elevated reactive oxygen species levels from neutrophils with low-grade inflammation in the elderly. Immun. Ageing, 2008, 5: 13
CrossRef Google scholar
[143.]
Lu RJ, et al.. Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex and age-related functional regulation. Nat. Aging, 2021, 1: 715-733
CrossRef Google scholar
[144.]
Sabbatini M, Bona E, Novello G, Migliario M, Reno F. Aging hampers neutrophil extracellular traps (NETs) efficacy. Aging Clin. Exp. Res, 2022, 34: 2345-2353
CrossRef Google scholar
[145.]
Vidal-Seguel N, et al.. High-intensity interval training reduces the induction of neutrophil extracellular traps in older men using live-neutrophil imaging as biosensor. Exp. Gerontol., 2023, 181 112280
CrossRef Google scholar
[146.]
Ferrando-Martinez S, et al.. Thymic function failure and C-reactive protein levels are independent predictors of all-cause mortality in healthy elderly humans. Age (Dordrecht), 2013, 35: 251-259
CrossRef Google scholar
[147.]
Wenisch C, Patruta S, Daxbock F, Krause R, Horl W. Effect of age on human neutrophil function. J. Leukoc. Biol., 2000, 67: 40-45
CrossRef Google scholar
[148.]
Srivastava S. The mitochondrial basis of aging and age-related disorders. Genes (Basel), 2017, 8: 398
CrossRef Google scholar
[149.]
Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed. Res. Int., 2014, 2014: 238463
CrossRef Google scholar
[150.]
Sakai J, et al.. Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils. Immunity, 2012, 37: 1037-1049
CrossRef Google scholar
[151.]
Dunham-Snary KJ, et al.. Mitochondria in human neutrophils mediate killing of Staphylococcus aureus. Redox Biol., 2022, 49 102225
CrossRef Google scholar
[152.]
Vorobjeva N, et al.. Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro. Eur. J. Cell Biol., 2017, 96: 254-265
CrossRef Google scholar
[153.]
Cao Z, et al.. Roles of mitochondria in neutrophils. Front. Immunol., 2022, 13 934444
CrossRef Google scholar
[154.]
Strassheim D, et al.. Modulation of bone marrow-derived neutrophil signaling by H2O2: disparate effects on kinases, NF-kappaB, and cytokine expression. Am. J. Physiol. Cell Physiol., 2004, 286: C683-C692
CrossRef Google scholar
[155.]
Zmijewski JW, Zhao X, Xu Z, Abraham E. Exposure to hydrogen peroxide diminishes NF-kappaB activation, IkappaB-alpha degradation, and proteasome activity in neutrophils. Am. J. Physiol. Cell Physiol., 2007, 293: C255-C266
CrossRef Google scholar
[156.]
Mussbacher M, et al.. Cell type-specific roles of NF-kappaB linking inflammation and thrombosis. Front. Immunol., 2019, 10: 85
CrossRef Google scholar
[157.]
Kamer AR, et al.. Periodontal disease associates with higher brain amyloid load in normal elderly. Neurobiol. Aging, 2015, 36: 627-633
CrossRef Google scholar
[158.]
Kamer AR, et al.. Periodontal dysbiosis associates with reduced CSF Abeta42 in cognitively normal elderly. Alzheimers Dement., 2021, 13: e12172
[159.]
Dominy SS, et al.. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv., 2019, 5: eaau3333
CrossRef Google scholar
[160.]
Riviere GR, Riviere KH, Smith KS. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer’s disease. Oral. Microbiol. Immunol., 2002, 17: 113-118
CrossRef Google scholar
[161.]
Lei S, et al.. Porphyromonas gingivalis bacteremia increases the permeability of the blood–brain barrier via the Mfsd2a/Caveolin-1 mediated transcytosis pathway. Int. J. Oral Sci., 2023, 15: 3
CrossRef Google scholar
[162.]
Molinero N, et al.. Gut microbiota, an additional hallmark of human aging and neurodegeneration. Neuroscience, 2023, 518: 141-161
CrossRef Google scholar
[163.]
Kain V, et al.. Obesogenic diet in aging mice disrupts gut microbe composition and alters neutrophil:lymphocyte ratio, leading to inflamed milieu in acute heart failure. FASEB J., 2019, 33: 6456-6469
CrossRef Google scholar
[164.]
Hendrikx T, Schnabl B. Indoles: metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J. Intern. Med., 2019, 286: 32-40
CrossRef Google scholar
[165.]
Alexeev EE, et al.. Microbial-derived indoles inhibit neutrophil myeloperoxidase to diminish bystander tissue damage. FASEB J., 2021, 35 e21552
CrossRef Google scholar
[166.]
Rey KM, et al.. Dysbiosis of the female murine gut microbiome exacerbates neutrophil-mediated vascular allograft injury by affecting immunoregulation by acetate. Transplantation, 2022, 106: 2155-2165
CrossRef Google scholar
[167.]
Fachi JL, et al.. Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2. J. Exp. Med., 2020, 217: e20190489
CrossRef Google scholar
[168.]
Tian Z, et al.. Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation. Cell Host Microbe, 2022, 30: 1450-1463.e1458
CrossRef Google scholar
[169.]
Hamam HJ, Khan MA, Palaniyar N. Histone acetylation promotes neutrophil extracellular trap formation. Biomolecules, 2019, 9: 32
CrossRef Google scholar
[170.]
Baldensperger T, et al.. Comprehensive analysis of posttranslational protein modifications in aging of subcellular compartments. Sci. Rep., 2020, 10 7596
CrossRef Google scholar
[171.]
Hamam HJ, Palaniyar N. Post-translational modifications in NETosis and NETs-mediated diseases. Biomolecules, 2019, 9: 369
CrossRef Google scholar
[172.]
Maciejczyk M, Zalewska A, Ladny JR. Salivary antioxidant barrier, redox status, and oxidative damage to proteins and lipids in healthy children, adults, and the elderly. Oxid. Med. Cell. Longev., 2019, 2019: 4393460
CrossRef Google scholar
[173.]
Gorudko IV, et al.. Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change. Free Radic. Biol. Med., 2014, 68: 326-334
CrossRef Google scholar
[174.]
Bochi GV, et al.. In vitro oxidation of collagen promotes the formation of advanced oxidation protein products and the activation of human neutrophils. Inflammation, 2016, 39: 916-927
CrossRef Google scholar
[175.]
Dedoussis GV, et al.. Age-dependent dichotomous effect of superoxide dismutase Ala16Val polymorphism on oxidized LDL levels. Exp. Mol. Med., 2008, 40: 27-34
CrossRef Google scholar
[176.]
Calmarza P, Trejo JM, Lapresta C, Lopez P. LDL oxidation and its association with carotid artery intima-media thickness and other cardiovascular risk factors in a sample of Spanish general population. Angiology, 2014, 65: 357-362
CrossRef Google scholar
[177.]
Obama T, Itabe H. Neutrophils as a novel target of modified low-density lipoproteins and an accelerator of cardiovascular diseases. Int. J. Mol. Sci., 2020, 21: 8312
CrossRef Google scholar
[178.]
Reeg S, Grune T. Protein oxidation in aging: does it play a role in aging progression?. Antioxid. Redox Signal., 2015, 23: 239-255
CrossRef Google scholar
[179.]
Gao X, et al.. Effect of individual Fc methionine oxidation on FcRn binding: Met252 oxidation impairs FcRn binding more profoundly than Met428 oxidation. J. Pharm. Sci., 2015, 104: 368-377
CrossRef Google scholar
[180.]
Pan H, et al.. Methionine oxidation in human IgG2 Fc decreases binding affinities to protein A and FcRn. Protein Sci., 2009, 18: 424-433
CrossRef Google scholar
[181.]
Chen LF, Mu Y, Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J., 2002, 21: 6539-6548
CrossRef Google scholar
[182.]
Wang D, Paz-Priel I, Friedman AD. NF-kappa B p50 regulates C/EBP alpha expression and inflammatory cytokine-induced neutrophil production. J. Immunol., 2009, 182: 5757-5762
CrossRef Google scholar
[183.]
Damascena HL, Silveira WAA, Castro MS, Fontes W. Neutrophil activated by the famous and potent PMA (phorbol myristate acetate). Cells, 2022, 11: 2889
CrossRef Google scholar
[184.]
Ambili R, Janam P. A critique on nuclear factor-kappa B and signal transducer and activator of transcription 3: the key transcription factors in periodontal pathogenesis. J. Indian Soc. Periodontol., 2017, 21: 350-356
CrossRef Google scholar
[185.]
Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A. Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell. Signal., 2013, 25: 1939-1948
CrossRef Google scholar
[186.]
Salminen A, Kauppinen A, Suuronen T, Kaarniranta K. SIRT1 longevity factor suppresses NF-kappaB-driven immune responses: regulation of aging via NF-kappaB acetylation?. Bioessays, 2008, 30: 939-942
CrossRef Google scholar
[187.]
Yeung F, et al.. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J., 2004, 23: 2369-2380
CrossRef Google scholar
[188.]
Gao R, et al.. Sirt1 deletion leads to enhanced inflammation and aggravates endotoxin-induced acute kidney injury. PLoS ONE, 2014, 9: e98909
CrossRef Google scholar
[189.]
Quintas A, de Solis AJ, Diez-Guerra FJ, Carrascosa JM, Bogonez E. Age-associated decrease of SIRT1 expression in rat hippocampus: prevention by late onset caloric restriction. Exp. Gerontol., 2012, 47: 198-201
CrossRef Google scholar
[190.]
Gong H, et al.. Age-dependent tissue expression patterns of Sirt1 in senescence-accelerated mice. Mol. Med. Rep., 2014, 10: 3296-3302
CrossRef Google scholar
[191.]
Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD. NF-kappaB in aging and disease. Aging Dis., 2011, 2: 449-465
[192.]
Qu L, et al.. Sirtuin 1 regulates matrix metalloproteinase-13 expression induced by Porphyromonas endodontalis lipopolysaccharide via targeting nuclear factor-kappaB in osteoblasts. J. Oral Microbiol., 2017, 9: 1317578
CrossRef Google scholar
[193.]
Liaw A, Liu C, Bartold M, Ivanovski S, Han P. Salivary histone deacetylase in periodontal disease: a cross-sectional pilot study. J. Periodontal Res., 2023, 58: 433-443
CrossRef Google scholar
[194.]
Baker SA, Rutter J. Metabolites as signalling molecules. Nat. Rev. Mol. Cell Biol., 2023, 24: 355-374
CrossRef Google scholar
[195.]
Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes, 2012, 61: 1315-1322
CrossRef Google scholar
[196.]
Adav SS, Wang Y. Metabolomics signatures of aging: recent advances. Aging Dis., 2021, 12: 646-661
CrossRef Google scholar
[197.]
Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD(+) metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol., 2021, 22: 119-141
CrossRef Google scholar
[198.]
Chaleckis R, Murakami I, Takada J, Kondoh H, Yanagida M. Individual variability in human blood metabolites identifies age-related differences. Proc. Natl Acad. Sci. USA, 2016, 113: 4252-4259
CrossRef Google scholar
[199.]
Amini P, et al.. Neutrophil extracellular trap formation requires OPA1-dependent glycolytic ATP production. Nat. Commun., 2018, 9 2958
CrossRef Google scholar
[200.]
Iske J, et al.. NAD+ prevents septic shock-induced death by non-canonical inflammasome blockade and IL-10 cytokine production in macrophages. eLife, 2023, 12: RP88686
CrossRef Google scholar
[201.]
Li B, et al.. SIRT6-regulated macrophage efferocytosis epigenetically controls inflammation resolution of diabetic periodontitis. Theranostics, 2023, 13: 231-249
CrossRef Google scholar
[202.]
Chen J, et al.. Sirtuin 3 deficiency exacerbates age-related periodontal disease. J. Periodontal Res., 2021, 56: 1163-1173
CrossRef Google scholar
[203.]
Zhou J, et al.. Glutamine availability regulates the development of aging mediated by mTOR signaling and autophagy. Front. Pharm., 2022, 13 924081
CrossRef Google scholar
[204.]
Furukawa S, et al.. Supplemental glutamine augments phagocytosis and reactive oxygen intermediate production by neutrophils and monocytes from postoperative patients in vitro. Nutrition, 2000, 16: 323-329
CrossRef Google scholar
[205.]
Castell L, Vance C, Abbott R, Marquez J, Eggleton P. Granule localization of glutaminase in human neutrophils and the consequence of glutamine utilization for neutrophil activity. J. Biol. Chem., 2004, 279: 13305-13310
CrossRef Google scholar
[206.]
Kim DS, et al.. Anti-inflammatory effects of glutamine on LPS-stimulated human dental pulp cells correlate with activation of MKP-1 and attenuation of the MAPK and NF-kappaB pathways. Int. Endod. J., 2015, 48: 220-228
CrossRef Google scholar
[207.]
Bonadonna RC, Groop LC, Simonson DC, DeFronzo RA. Free fatty acid and glucose metabolism in human aging: evidence for operation of the Randle cycle. Am. J. Physiol., 1994, 266: E501-E509
[208.]
Thimmappa PY, Vasishta S, Ganesh K, Nair AS, Joshi MB. Neutrophil (dys)function due to altered immuno-metabolic axis in type 2 diabetes: implications in combating infections. Hum. Cell, 2023, 36: 1265-1282
CrossRef Google scholar
[209.]
Chen W, et al.. Free fatty acids-induced neutrophil extracellular traps lead to dendritic cells activation and T cell differentiation in acute lung injury. Aging (Albany, NY), 2021, 13: 26148-26160
CrossRef Google scholar
[210.]
Preshaw PM, et al.. Periodontitis and diabetes: a two-way relationship. Diabetologia, 2012, 55: 21-31
CrossRef Google scholar
Funding
U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)(AG080696); New York University Dean’s Undergraduate Research Fund Grant; U.S. Department of Health & Human Services | NIH | National Institute of Dental and Craniofacial Research (NIDCR)(DE024509)

Accesses

Citations

Detail

Sections
Recommended

/