Strontium–Alix interaction enhances exosomal miRNA selectively loading in synovial MSCs for temporomandibular joint osteoarthritis treatment

Wenxiu Yuan, Jiaqi Liu, Zhenzhen Zhang, Chengxinyue Ye, Xueman Zhou, Yating Yi, Yange Wu, Yijun Li, Qinlanhui Zhang, Xin Xiong, Hengyi Xiao, Jin Liu, Jun Wang

International Journal of Oral Science ›› 2025, Vol. 17 ›› Issue (1) : 0.

International Journal of Oral Science ›› 2025, Vol. 17 ›› Issue (1) : 0. DOI: 10.1038/s41368-024-00329-5
Article

Strontium–Alix interaction enhances exosomal miRNA selectively loading in synovial MSCs for temporomandibular joint osteoarthritis treatment

Author information +
History +

Abstract

The ambiguity of etiology makes temporomandibular joint osteoarthritis (TMJOA) “difficult-to-treat”. Emerging evidence underscores the therapeutic promise of exosomes in osteoarthritis management. Nonetheless, challenges such as low yields and insignificant efficacy of current exosome therapies necessitate significant advances. Addressing lower strontium (Sr) levels in arthritic synovial microenvironment, we studied the effect of Sr element on exosomes and miRNA selectively loading in synovial mesenchymal stem cells (SMSCs). Here, we developed an optimized system that boosts the yield of SMSC-derived exosomes (SMSC-EXOs) and improves their miRNA profiles with an elevated proportion of beneficial miRNAs, while reducing harmful ones by pretreating SMSCs with Sr. Compared to untreated SMSC-EXOs, Sr-pretreated SMSC-derived exosomes (Sr-SMSC-EXOs) demonstrated superior therapeutic efficacy by mitigating chondrocyte ferroptosis and reducing osteoclast-mediated joint pain in TMJOA. Our results illustrate Alix’s crucial role in Sr-triggered miRNA loading, identifying miR-143-3p as a key anti-TMJOA exosomal component. Interestingly, this system is specifically oriented towards synovium-derived stem cells. The insight into trace element-driven, site-specific miRNA selectively loading in SMSC-EXOs proposes a promising therapeutic enhancement strategy for TMJOA.

Cite this article

Download citation ▾
Wenxiu Yuan, Jiaqi Liu, Zhenzhen Zhang, Chengxinyue Ye, Xueman Zhou, Yating Yi, Yange Wu, Yijun Li, Qinlanhui Zhang, Xin Xiong, Hengyi Xiao, Jin Liu, Jun Wang. Strontium–Alix interaction enhances exosomal miRNA selectively loading in synovial MSCs for temporomandibular joint osteoarthritis treatment. International Journal of Oral Science, 2025, 17(1): 0 https://doi.org/10.1038/s41368-024-00329-5

References

[1.]
Cao H, et al.. Cell-free osteoarthritis treatment with sustained-release of chondrocyte-targeting exosomes from umbilical cord-derived mesenchymal stem cells to rejuvenate aging chondrocytes. ACS Nano, 2023, 17: 13358-13376.
CrossRef Google scholar
[2.]
Hanai H, et al.. Small extracellular vesicles derived from human adipose-derived mesenchymal stromal cells cultured in a new chemically-defined contaminate-free media exhibit enhanced biological and therapeutic effects on human chondrocytes in vitro and in a mouse osteoarthritis model. J. Extracell. Vesicles, 2023, 12. e12337
CrossRef Google scholar
[3.]
Kong R, Ji L, Pang Y, Zhao D, Gao J. Exosomes from osteoarthritic fibroblast-like synoviocytes promote cartilage ferroptosis and damage via delivering microRNA-19b-3p to target SLC7A11 in osteoarthritis. Front Immunol., 2023, 14. 1181156
CrossRef Google scholar
[4.]
Xu X, et al.. Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration. Biomaterials, 2021, 269. 120539
CrossRef Google scholar
[5.]
You, D. G. et al. Metabolically engineered stem cell-derived exosomes to regulate macrophage heterogeneity in rheumatoid arthritis. Sci. Adv. 7 https://doi.org/10.1126/sciadv.abe0083 (2021).
[6.]
Zhang S, et al.. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials, 2019, 200: 35-47.
CrossRef Google scholar
[7.]
Bi R, et al.. Divergent chondro/osteogenic transduction laws of fibrocartilage stem cell drive temporomandibular joint osteoarthritis in growing mice. Int J. Oral. Sci., 2023, 15: 36.
CrossRef Google scholar
[8.]
Tao S-C, et al.. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 2017, 7: 180-195.
CrossRef Google scholar
[9.]
Zhu Y, et al.. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Res Ther., 2017, 8: 64.
CrossRef Google scholar
[10.]
Zhang B, et al.. MiR-671 ameliorates the progression of osteoarthritis in vitro and in vivo. Pathol. Res. Pr., 2019, 215. 152423
CrossRef Google scholar
[11.]
Cao Y, et al.. Decreased miR-214-3p activates NF-κB pathway and aggravates osteoarthritis progression. EBioMedicine, 2021, 65. 103283
CrossRef Google scholar
[12.]
Ni Z, et al.. The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis. Cell Death Dis., 2019, 10: 522.
CrossRef Google scholar
[13.]
Liu L, et al.. Bone marrow stromal cells stimulated by strontium-substituted calcium silicate ceramics: release of exosomal miR-146a regulates osteogenesis and angiogenesis. Acta Biomaterialia, 2021, 119: 444-457.
CrossRef Google scholar
[14.]
Lee ES, et al.. Reactive oxygen species-responsive dendritic cell-derived exosomes for rheumatoid arthritis. Acta Biomaterialia, 2021, 128: 462-473.
CrossRef Google scholar
[15.]
Wu Y, et al.. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int J. Oral. Sci., 2022, 14: 40.
CrossRef Google scholar
[16.]
Liang Y, et al.. Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy. ACS Appl. Mater. Interfaces, 2020, 12: 36938-36947.
CrossRef Google scholar
[17.]
Qin, H. et al. Silencing miR-146a-5p protects against injury-induced osteoarthritis in mice. Biomolecules 13 https://doi.org/10.3390/biom13010123 (2023).
[18.]
Baloun J, et al.. Circulating miRNAs in hand osteoarthritis. Osteoarthr. Cartil., 2023, 31: 228-237.
CrossRef Google scholar
[19.]
Wei K, et al.. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature, 2020, 582: 259-264.
CrossRef Google scholar
[20.]
Croft AP, et al.. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature, 2019, 570: 246-251.
CrossRef Google scholar
[21.]
Song, J. E. et al. Role of synovial exosomes in osteoclast differentiation in inflammatory arthritis. Cells 10 https://doi.org/10.3390/cells10010120 (2021).
[22.]
Kato T, et al.. Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res Ther., 2014, 16. R163
CrossRef Google scholar
[23.]
Zhang Z, et al.. Micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and secretion to improve osseointegration. J. Nanobiotechnology, 2021, 19. 78
CrossRef Google scholar
[24.]
Wu Z, He D, Li H. Bioglass enhances the production of exosomes and improves their capability of promoting vascularization. Bioact. Mater., 2021, 6: 823-835
[25.]
Wang Z, et al.. Exosomes secreted by macrophages upon copper ion stimulation can promote angiogenesis. Mater. Sci. Eng. C. Mater. Biol. Appl., 2021, 123. 111981
CrossRef Google scholar
[26.]
Abozaid OAR, et al.. Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of Alzheimer’s disease by regulating Sirt1/miRNA-134/GSK3β expression. Biol. Trace Elem. Res., 2022, 200: 5104-5114.
CrossRef Google scholar
[27.]
Othman MS, Hafez MM, Abdel Moneim AE. The potential role of zinc oxide nanoparticles in microRNAs dysregulation in STZ-induced type 2 diabetes in rats. Biol. Trace Elem. Res, 2020, 197: 606-618.
CrossRef Google scholar
[28.]
Tarale, P. et al. Manganese exposure: Linking down-regulation of miRNA-7 and miRNA-433 with α-synuclein overexpression and risk of idiopathic Parkinson’s disease. Toxicol. In Vitro 46 https://doi.org/10.1016/j.tiv.2017.10.003 (2018).
[29.]
Niedermeier W, Griggs JH. Trace metal composition of synovial fluid and blood serum of patients with rheumatoid arthritis. J. Chronic Dis., 1971, 23: 527-536.
CrossRef Google scholar
[30.]
Reginster J-Y, et al.. Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: results of a double-blind, randomised placebo-controlled trial. Ann. Rheum. Dis., 2013, 72: 179-186.
CrossRef Google scholar
[31.]
Yu H, et al.. Strontium ranelate promotes chondrogenesis through inhibition of the Wnt/β-catenin pathway. Stem Cell Res. Ther., 2021, 12: 296.
CrossRef Google scholar
[32.]
Bruyère O, et al.. Clinically meaningful effect of strontium ranelate on symptoms in knee osteoarthritis: a responder analysis. Rheumatol. (Oxf.), 2014, 53: 1457-1464.
CrossRef Google scholar
[33.]
Meunier PJ, et al.. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N. Engl. J. Med., 2004, 350: 459-468.
CrossRef Google scholar
[34.]
Li S, et al.. Spontaneous immunomodulation and regulation of angiogenesis and osteogenesis by Sr/Cu-borosilicate glass (BSG) bone cement to repair critical bone defects. Bioact. Mater., 2023, 23: 101-117
[35.]
Chiang C-W, et al.. Strontium ranelate-laden near-infrared photothermal-inspired methylcellulose hydrogel for arthritis treatment. Mater. Sci. Eng. C Mater. Biol. Appl, 2021, 123. 111980
CrossRef Google scholar
[36.]
Wang D, et al.. Construction of Wogonin nanoparticle-containing strontium-doped nanoporous structure on titanium surface to promote osteoporosis fracture repair. Adv. Health. Mater., 2022, 11. e2201405
CrossRef Google scholar
[37.]
Ayyar BV, et al.. CLIC and membrane wound repair pathways enable pandemic norovirus entry and infection. Nat. Commun., 2023, 14. 1148
CrossRef Google scholar
[38.]
Laporte MH, et al.. Alix is required for activity-dependent bulk endocytosis at brain synapses. PLoS Biol., 2022, 20: e3001659.
CrossRef Google scholar
[39.]
Monypenny J, et al.. ALIX Regulates Tumor-Mediated Immunosuppression by Controlling EGFR Activity and PD-L1 Presentation. Cell Rep., 2018, 24: 630-641.
CrossRef Google scholar
[40.]
Sun R, et al.. ALIX increases protein content and protective function of iPSC-derived exosomes. J. Mol. Med (Berl.), 2019, 97: 829-844.
CrossRef Google scholar
[41.]
Martin-Serrano J, Marsh M. ALIX catches HIV. Cell Host Microbe, 2007, 1: 5-7.
CrossRef Google scholar
[42.]
Feng Z, et al.. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature, 2013, 496: 367-371.
CrossRef Google scholar
[43.]
Lee C-P, et al.. The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein-Barr Virus. PLoS Pathog., 2012, 8: e1002904.
CrossRef Google scholar
[44.]
Zhang M, et al.. Identification of microRNA‑363‑3p as an essential regulator of chondrocyte apoptosis in osteoarthritis by targeting NRF1 through the p53‑signaling pathway. Mol. Med Rep., 2020, 21: 1077-1088
[45.]
Zhou J-L, Deng S, Fang H-S, Peng H, Hu Q-J. CircSPI1_005 ameliorates osteoarthritis by sponging miR-370-3p to regulate the expression of MAP3K9. Int Immunopharmacol., 2022, 110. 109064
CrossRef Google scholar
[46.]
Zhou X, et al.. D-mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF-2α-dependent manner. Cell Prolif., 2021, 54. e13134
CrossRef Google scholar
[47.]
Zhu S, et al.. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest, 2019, 129: 1076-1093.
CrossRef Google scholar
[48.]
Larios J, Mercier V, Roux A, Gruenberg J. ALIX- and ESCRT-III-dependent sorting of tetraspanins to exosomes. J. Cell Biol., 2020, 219: e201904113.
CrossRef Google scholar
[49.]
Ghossoub R, et al.. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat. Commun., 2014, 5. 3477
CrossRef Google scholar
[50.]
Ferreira JV, et al.. LAMP2A regulates the loading of proteins into exosomes. Sci. Adv., 2022, 8. eabm1140
CrossRef Google scholar
[51.]
Chen C, et al.. Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness. Mol. Cancer, 2022, 21. 46
CrossRef Google scholar
[52.]
Guan L, et al.. HRS phosphorylation drives immunosuppressive exosome secretion and restricts CD8+ T-cell infiltration into tumors. Nat. Commun., 2022, 13. 4078
CrossRef Google scholar
[53.]
Cambré I, et al.. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat. Commun., 2018, 9. 4613
CrossRef Google scholar
[54.]
Hernández-Camarero P, López-Ruiz E, Marchal JA, Perán M. Cancer: a mirrored room between tumor bulk and tumor microenvironment. J. Exp. Clin. Cancer Res, 2021, 40: 217.
CrossRef Google scholar
[55.]
Mertz W. The essential trace elements. Science, 1981, 213: 1332-1338.
CrossRef Google scholar
[56.]
He J-L, et al.. Associations of exposure to multiple trace elements with the risk of goiter: A case-control study. Environ. Pollut., 2021, 288. 117739
CrossRef Google scholar
[57.]
Miledi R. Strontium as a substitute for calcium in the process of transmitter release at the neuromuscular junction. Nature, 1966, 212: 1233-1234.
CrossRef Google scholar
[58.]
Zhu Y, et al.. Mg2+ -mediated autophagy-dependent polarization of macrophages mediates the osteogenesis of bone marrow stromal stem cells by interfering with macrophage-derived exosomes containing miR-381. J. Orthop. Res, 2022, 40: 1563-1576.
CrossRef Google scholar
[59.]
Liu L, et al.. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis. Biomaterials, 2019, 192: 523-536.
CrossRef Google scholar
[60.]
Yin CM, et al.. Dysregulation of both miR-140-3p and miR-140-5p in synovial fluid correlate with osteoarthritis severity. Bone Jt. Res, 2017, 6: 612-618.
CrossRef Google scholar
[61.]
Al-Modawi RN, Brinchmann JE, Karlsen TA. Multi-pathway protective effects of microRNAs on human chondrocytes in an in vitro model of osteoarthritis. Mol. Ther. Nucleic Acids, 2019, 17: 776-790.
CrossRef Google scholar
[62.]
Huang, Z. et al. MiR-26a-5p enhances cells proliferation, invasion, and apoptosis resistance of fibroblast-like synoviocytes in rheumatoid arthritis by regulating PTEN/PI3K/AKT pathway. Biosci. Rep. 39 https://doi.org/10.1042/BSR20182192 (2019).
[63.]
Ormseth MJ, et al.. Utility of Select Plasma MicroRNA for Disease and Cardiovascular Risk Assessment in Patients with Rheumatoid Arthritis. J. Rheumatol., 2015, 42: 1746-1751.
CrossRef Google scholar
[64.]
McKenzie AJ, et al.. KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Rep., 2016, 15: 978-987.
CrossRef Google scholar
[65.]
Liu, X.-M., Ma, L. & Schekman, R. Selective sorting of microRNAs into exosomes by phase-separated YBX1 condensates. Elife 10 https://doi.org/10.7554/eLife.71982 (2021).
[66.]
Latysheva N, et al.. Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63. Mol. Cell Biol., 2006, 26: 7707-7718.
CrossRef Google scholar
[67.]
Zhang S, et al.. Mutant p53 Drives Cancer Metastasis via RCP-Mediated Hsp90α Secretion. Cell Rep., 2020, 32. 107879
CrossRef Google scholar
[68.]
Majer O, Liu B, Kreuk LSM, Krogan N, Barton GM. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature, 2019, 575: 366-370.
CrossRef Google scholar
[69.]
Roucourt B, Meeussen S, Bao J, Zimmermann P, David G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res., 2015, 25: 412-428.
CrossRef Google scholar
[70.]
Zhou L-L, et al.. MicroRNA‑143‑3p contributes to the regulation of pain responses in collagen‑induced arthritis. Mol. Med Rep., 2018, 18: 3219-3228
[71.]
Balaskas, P. et al. MicroRNA Signatures in Cartilage Ageing and Osteoarthritis. Biomedicines 11 https://doi.org/10.3390/biomedicines11041189 (2023).
[72.]
Yang Z, Wang J, Pan Z, Zhang Y. miR-143-3p regulates cell proliferation and apoptosis by targeting IGF1R and IGFBP5 and regulating the Ras/p38 MAPK signaling pathway in rheumatoid arthritis. Exp. Ther. Med., 2018, 15: 3781-3790
[73.]
Lopez-Fabuel I, et al.. Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis. Nat. Commun., 2022, 13. 536
CrossRef Google scholar
[74.]
Zhou J, et al.. Glycerol kinase 5 confers gefitinib resistance through SREBP1/SCD1 signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38: 96.
CrossRef Google scholar
Funding
National Natural Science Foundation of China (National Science Foundation of China)(82472149); Sichuan Science and Technology Program (No.24ZDYF0099) Research and Develop Program, West China Hospital of Stomatology Sichuan University (RD-03-202101),

Accesses

Citations

Detail

Sections
Recommended

/