Synthetic high-density lipoprotein (sHDL): a bioinspired nanotherapeutics for managing periapical bone inflammation

Renan Dal-Fabbro1, Minzhi Yu2, Ling Mei2, Hajime Sasaki1, Anna Schwendeman2, Marco C. Bottino1,3

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 50. DOI: 10.1038/s41368-024-00316-w
ARTICLE

Synthetic high-density lipoprotein (sHDL): a bioinspired nanotherapeutics for managing periapical bone inflammation

  • Renan Dal-Fabbro1, Minzhi Yu2, Ling Mei2, Hajime Sasaki1, Anna Schwendeman2, Marco C. Bottino1,3
Author information +
History +

Abstract

Apical periodontitis (AP) is a dental-driven condition caused by pathogens and their toxins infecting the inner portion of the tooth (i.e., dental pulp tissue), resulting in inflammation and apical bone resorption affecting 50% of the worldwide population, with more than 15 million root canals performed annually in the United States. Current treatment involves cleaning and decontaminating the infected tissue with chemo-mechanical approaches and materials introduced years ago, such as calcium hydroxide, zinc oxide-eugenol, or even formalin products. Here, we present, for the first time, a nanotherapeutics based on using synthetic high-density lipoprotein (sHDL) as an innovative and safe strategy to manage dental bone inflammation. sHDL application in concentrations ranging from 25 µg to 100 µg/mL decreases nuclear factor Kappa B (NF-κB) activation promoted by an inflammatory stimulus (lipopolysaccharide, LPS). Moreover, sHDL at 500 µg/mL concentration markedly decreases in vitro osteoclastogenesis (P < 0.001), and inhibits IL-1α (P = 0.027), TNF-α (P = 0.004), and IL-6 (P < 0.001) production in an inflammatory state. Notably, sHDL strongly dampens the Toll-Like Receptor signaling pathway facing LPS stimulation, mainly by downregulating at least 3-fold the pro-inflammatory genes, such as Il1b, Il1a, Il6, Ptgs2, and Tnf. In vivo, the lipoprotein nanoparticle applied after NaOCl reduced bone resorption volume to (1.3 ± 0.05) mm3 and attenuated the inflammatory reaction after treatment to (1 090 ± 184) cells compared to non-treated animals that had (2.9 ± 0.6) mm3 (P = 0.012 3) and (2 443 ± 931) cells (P = 0.004), thus highlighting its promising clinical potential as an alternative therapeutic for managing dental bone inflammation.

Cite this article

Download citation ▾
Renan Dal-Fabbro, Minzhi Yu, Ling Mei, Hajime Sasaki, Anna Schwendeman, …Marco C. Bottino. Synthetic high-density lipoprotein (sHDL): a bioinspired nanotherapeutics for managing periapical bone inflammation. International Journal of Oral Science, 2024, 16(0): 50 https://doi.org/10.1038/s41368-024-00316-w

References

1. Medzhitov R.Origin and physiological roles of inflammation.Nature 454, 428-435 (2008).
2. Krishnamoorthy S.& Honn, K. V. Inflammation and disease progression.Cancer Metastasis Rev. 25, 481-491 (2006).
3. Tabrez, S.et al.A putative association of interleukin-10 promoter polymorphisms with cardiovascular disease.IUBMB Life 69, 522-527 (2017).
4. Jabir N. R.& Tabrez, S. Cardiovascular disease management through restrained inflammatory responses.Curr. Pharm. Des. 22, 940-946 (2016).
5. Peres, M. A.et al.Oral diseases: a global public health challenge.Lancet 394, 249-260 (2019).
6. Kakehashi, S., Stanley, H. R.& Fitzgerald, R. J. The Effects of Surgical Exposures of Dental Pulps in Germ-Free and Conventional Laboratory Rats.Oral Surg. Oral Med. Oral Pathol. 20, 340-349 (1965).
7. Liapatas, S., Nakou, M.& Rontogianni, D. Inflammatory infiltrate of chronic periradicular lesions: an immunohistochemical study.Int. Endod. J. 36, 464-471 (2003).
8. Ricucci, D., Mannocci, F.& Ford, T. R. A study of periapical lesions correlating the presence of a radiopaque lamina with histological findings.Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 101, 389-394 (2006).
9. Menezes, R.et al.Receptor activator NFkappaB-ligand and osteoprotegerin protein expression in human periapical cysts and granulomas.Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 102, 404-409 (2006).
10. Fukada, S. Y.et al.Factors involved in the T helper type 1 and type 2 cell commitment and osteoclast regulation in inflammatory apical diseases.Oral Microbiol. Immunol. 24, 25-31 (2009).
11. Graves, D. T., Oates, T.& Garlet, G. P. Review of osteoimmunology and the host response in endodontic and periodontal lesions. J. Oral Microbiol. 3, https://doi.org/10.3402/jom.v3i0.5304(2011).
12. Stashenko, P., Teles, R.& D’Souza, R. Periapical inflammatory responses and their modulation.Crit. Rev. Oral Biol. Med. 9, 498-521 (1998).
13. Kuai R., Li D., Chen Y. E., Moon J. J.& Schwendeman, A. High-Density Lipoproteins: Nature’s Multifunctional Nanoparticles.ACS Nano 10, 3015-3041 (2016).
14. Fernandez, A.et al.Expression of Toll-like receptors 2 and 4 and its association with matrix metalloproteinases in symptomatic and asymptomatic apical periodontitis.Clin. Oral Investig. 23, 4205-4212 (2019).
15. Zhu, X.et al.Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol.J. Lipid Res. 51, 3196-3206 (2010).
16. Cheng R., Wu Z., Li M., Shao M.& Hu, T. Interleukin-1beta is a potential therapeutic target for periodontitis: a narrative review.Int. J. Oral Sci. 12, 2(2020).
17. McMahon, K. M.et al. Synthetic high-density lipoprotein-like nanoparticles as cancer therapy.Cancer Treat. Res. 166, 129-150 (2015).
18. Guo, L.et al.Replenishing HDL with synthetic HDL has multiple protective effects against sepsis in mice.Sci Signal 15, eabl9322 (2022).
19. Marrache S.& Dhar, S. Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis.Proc. Natl. Acad. Sci. USA. 110, 9445-9450 (2013).
20. Chen, J.et al.High density lipoprotein mimicking nanoparticles for atherosclerosis.Nano Converg. 7, 6(2020).
21. Brandenburg, K.et al.Biophysical characterization of the interaction of high-density lipoprotein (HDL) with endotoxins.Eur. J. Biochem. 269, 5972-5981 (2002).
22. Foit L.& Thaxton, C. S. Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4.Biomaterials 100, 67-75 (2016).
23. Gupta, H.et al.Inhibition of lipopolysaccharide-induced inflammatory responses by an apolipoprotein AI mimetic peptide.Circ. Res. 97, 236-243 (2005).
24. Meilhac, O., Tanaka, S.& Couret, D. High-Density Lipoproteins Are Bug Scavengers.Biomolecules 10, 598(2020).
25. Andrada, A. C.et al.Immunomodulation Mediated by Azithromycin in Experimental Periapical Inflammation.J. Endod. 46, 1648-1654 (2020).
26. Hirai, K.et al.Serum Amyloid A Contributes to Chronic Apical Periodontitis via TLR2 and TLR4.J. Dent. Res. 98, 117-125 (2019).
27. Hirai K., Furusho H., Hirota K.& Sasaki, H. Activation of hypoxia-inducible factor 1 attenuates periapical inflammation and bone loss.Int. J. Oral Sci. 10, 12(2018).
28. Leon-Lopez, M. et al. Prevalence of root canal treatment worldwide: A systematic review and meta-analysis.Int. Endod. J. 55, 1105-1127 (2022).
29. Boutsioukis C.& Arias-Moliz, M. T. Present status and future directions - irrigants and irrigation methods.Int. Endod. J. 55, 588-612 (2022).
30. Campbell, F., Cunliffe, J.& Darcey, J. Current technology in endodontic instrumentation: advances in metallurgy and manufacture.Br. Dent. J. 231, 49-57 (2021).
31. Estrela, C.et al.Characterization of successful root canal treatment.Braz. Dent. J. 25, 3-11 (2014).
32. Berghaus, L. J.et al.Innate immune responses of primary murine macrophage-lineage cells and RAW 264.7 cells to ligands of Toll-like receptors 2, 3, and 4.Comp. Immunol. Microbiol. Infect. Dis. 33, 443-454 (2010).
33. Martinho, F. C.et al.Signaling Pathways Activation by Primary Endodontic Infectious Contents and Production of Inflammatory Mediators.J. Endod. 40, 484-489 (2014).
34. Graunaite, I., Lodiene, G.& Maciulskiene, V. Pathogenesis of apical periodontitis: a literature review.J. Oral Maxillofac. Res. 2, e1(2012).
35. Rahman M. M.& McFadden, G. Modulation of NF-kappaB signalling by microbial pathogens.Nat. Rev. Microbiol. 9, 291-306 (2011).
36. Azuma M. M., Samuel R. O., Gomes-Filho, J. E., Dezan-Junior, E. & Cintra, L. T. The role of IL-6 on apical periodontitis: a systematic review.Int. Endod. J. 47, 615-621 (2014).
37. Wu Q., Zhou X., Huang D., Ji Y.& Kang, F. IL-6 Enhances Osteocyte-Mediated Osteoclastogenesis by Promoting JAK2 and RANKL Activity In Vitro.Cell. Physiol. Biochem. 41, 1360-1369 (2017).
38. Liu T., Zhang L., Joo D.& Sun, S. C. NF-kappaB signaling in inflammation.Sig. Transduct Target Ther. 2, 17023(2017).
39. De Nardo, D. et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3.Nat. Immunol. 15, 152-160 (2014).
40 40.Zhu, X.et al. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol[S]. J. Lipid Res. 51, 3196-3206 (2010).
41. AlQranei, M. S., Senbanjo, L. T., Aljohani, H., Hamza, T. & Chellaiah, M. A. Lipopolysaccharide- TLR-4 Axis regulates Osteoclastogenesis independent of RANKL/RANK signaling.BMC Immunol 22, 23(2021).
42. Kim, S. Y.et al.Phospholipids impact the protective effects of HDL-mimetic nanodiscs against lipopolysaccharide-induced inflammation.Nanomedicine 18, 2127-2142 (2023).
43. Tang Y., Wang S., Yi Q., Xia Y.& Geng, B. High-density Lipoprotein Cholesterol Is Negatively Correlated with Bone Mineral Density and Has Potential Predictive Value for Bone Loss.Lipids Health Dis. 20, 75(2021).
44. Pelton, K.et al.Hypercholesterolemia promotes an osteoporotic phenotype.Am. J. Pathol. 181, 928-936 (2012).
45. Sheng, Y. H.et al.MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli.Mucosal. Immunol. 6, 557-568 (2013).
46. Doyle, S.et al.IRF3 mediates a TLR3/TLR4-specific antiviral gene program.Immunity 17, 251-263 (2002).
47. Petro T. M.IFN Regulatory Factor 3 in Health and Disease.J. Immunol. 205, 1981-1989 (2020).
48. Tarassishin, L., Suh, H. S.& Lee, S. C. Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway.J. Neuroinflammation 8, 187(2011).
49. Popli, S.et al.IRF3 inhibits nuclear translocation of NF-kappaB to prevent viral inflammation.Proc. Natl. Acad. Sci. USA. 119, e2121385119(2022).
50. Gunthner R.& Anders, H. J. Interferon-regulatory factors determine macrophage phenotype polarization.Mediators Inflamm. 2013, 731023(2013).
51. Queiroz-Junior, C. M. et al. A controversial role for IL-12 in immune response and bone resorption at apical periodontal sites.Clin. Dev. Immunol. 2010, 327417(2010).
52. Yamada, N.et al.Interleukin-18 and interleukin-12 synergistically inhibit osteoclastic bone-resorbing activity.Bone 30, 901-908 (2002).
53. Horwood N. J., Elliott J., Martin T. J.& Gillespie, M. T. IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro.J. Immunol. 166, 4915-4921 (2001).
54. Sasaki, H.et al.Gamma interferon (IFN-gamma) and IFN-gamma-inducing cytokines interleukin-12 (IL-12) and IL-18 do not augment infection-stimulated bone resorption in vivo.Clin. Diagn. Lab. Immunol. 11, 106-110 (2004).
55. Jain, A., Kaczanowska, S.& Davila, E. IL-1 Receptor-Associated Kinase Signaling and Its Role in Inflammation, Cancer Progression, and Therapy Resistance.Front. Immunol. 5, 553(2014).
56. Gabay, C., Lamacchia, C.& Palmer, G. IL-1 pathways in inflammation and human diseases.Nat. Rev. Rheumatol. 6, 232-241 (2010).
57. Kim, M. S., Day, C. J.& Morrison, N. A. MCP-1 is induced by receptor activator of nuclear factor-kappaB ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation.J. Biol. Chem. 280, 16163-16169 (2005).
58. Liu L., Wang L., Wu Y.& Peng, B. The expression of MCP-1 and CCR2 in induced rats periapical lesions.Arch. Oral Biol. 59, 492-499 (2014).
59. Lin, Y., Wang, Y.& Li, P.-F. PPARα: An emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases.Front. Endocrinol. 13, 1074911(2022).
60. Chen Y.& Hu, Y. Therapeutic potential of PPARα agonist in ligature-induced experimental periodontitis.J. Appl. Oral Sci. 30, e20210648(2022).
61. Duckett C. S.Apoptosis and NF-kappa B: the FADD connection.J. Clin. Invest. 109, 579-580 (2002).
62. Gluskin A. H., Lai G., Peters C. I.& Peters, O. A. The double-edged sword of calcium hydroxide in endodontics: Precautions and preventive strategies for extrusion injuries into neurovascular anatomy.J. Am. Dental Assoc. 151, 317-326 (2020).
63. Fawaz, M. V.et al.Phospholipid Component Defines Pharmacokinetic and Pharmacodynamic Properties of Synthetic High-Density Lipoproteins.J. Pharmacol. Exp. Ther. 372, 193-204 (2020).
64. Schwendeman, A.et al.The effect of phospholipid composition of reconstituted HDL on its cholesterol efflux and anti-inflammatory properties.J. Lipid Res. 56, 1727-1737 (2015).
65. Howait, M.et al.Elevated Expression of Macrophage Migration Inhibitory Factor Promotes Inflammatory Bone Resorption Induced in a Mouse Model of Periradicular Periodontitis.J. Immunol. 202, 2035-2043 (2019).
66. Sasaki, H.et al.Endodontic Infection-induced Inflammation Resembling Osteomyelitis of the Jaws in Toll-like Receptor 2/Interleukin 10 Double-knockout Mice.J. Endod. 45, 181-188 (2019).
67. O’Brien, J., Hayder, H. & Peng, C. Automated Quantification and Analysis of Cell Counting Procedures Using ImageJ Plugins.J. Vis. Exp. 17, 54719(2016).
PDF

Accesses

Citations

Detail

Sections
Recommended

/