Multiomics profiling reveals VDR as a central regulator of mesenchymal stem cell senescence with a known association with osteoporosis after high-fat diet exposure

Jiayao Chen1,2,3, Shuhong Kuang1,2,3, Jietao Cen1,2,3, Yong Zhang1,2,3, Zongshan Shen1,2,3, Wei Qin1,2,3, Qiting Huang1,2,3, Zifeng Wang4, Xianling Gao1,2,3, Fang Huang1,2,3, Zhengmei Lin1,2,3

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 41. DOI: 10.1038/s41368-024-00309-9

Multiomics profiling reveals VDR as a central regulator of mesenchymal stem cell senescence with a known association with osteoporosis after high-fat diet exposure

  • Jiayao Chen1,2,3, Shuhong Kuang1,2,3, Jietao Cen1,2,3, Yong Zhang1,2,3, Zongshan Shen1,2,3, Wei Qin1,2,3, Qiting Huang1,2,3, Zifeng Wang4, Xianling Gao1,2,3, Fang Huang1,2,3, Zhengmei Lin1,2,3
Author information +
History +

Abstract

The consumption of a high-fat diet (HFD) has been linked to osteoporosis and an increased risk of fragility fractures. However, the specific mechanisms of HFD-induced osteoporosis are not fully understood. Our study shows that exposure to an HFD induces premature senescence in bone marrow mesenchymal stem cells (BMSCs), diminishing their proliferation and osteogenic capability, and thereby contributes to osteoporosis. Transcriptomic and chromatin accessibility analyses revealed the decreased chromatin accessibility of vitamin D receptor (VDR)-binding sequences and decreased VDR signaling in BMSCs from HFD-fed mice, suggesting that VDR is a key regulator of BMSC senescence. Notably, the administration of a VDR activator to HFD-fed mice rescued BMSC senescence and significantly improved osteogenesis, bone mass, and other bone parameters. Mechanistically, VDR activation reduced BMSC senescence by decreasing intracellular reactive oxygen species (ROS) levels and preserving mitochondrial function. Our findings not only elucidate the mechanisms by which an HFD induces BMSC senescence and associated osteoporosis but also offer new insights into treating HFD-induced osteoporosis by targeting the VDR-superoxide dismutase 2 (SOD2)-ROS axis.

Cite this article

Download citation ▾
Jiayao Chen, Shuhong Kuang, Jietao Cen, Yong Zhang, Zongshan Shen, Wei Qin, Qiting Huang, Zifeng Wang, Xianling Gao, Fang Huang, …Zhengmei Lin. Multiomics profiling reveals VDR as a central regulator of mesenchymal stem cell senescence with a known association with osteoporosis after high-fat diet exposure. International Journal of Oral Science, 2024, 16(0): 41 https://doi.org/10.1038/s41368-024-00309-9

References

1. Shan, Z.et al.Trends in dietary carbohydrate, protein, and fat intake and diet quality among US adults, 1999-2016.JAMA 322, 1178(2019).
2. Xu Y., Zhu S., Zhou Y., Pramono A.& Zhou, Z. Changing income-related inequality in daily nutrients intake: a longitudinal analysis from China.Int. J. Environ. Res. Public Health 17, 7627(2020).
3. Hannon B. A., Thompson S. V., An R.& Teran-Garcia, M. Clinical outcomes of dietary replacement of saturated fatty acids with unsaturated fat sources in adults with overweight and obesity: a systematic review and meta-analysis of randomized control trials.Ann. Nutr. Metab. 71, 107-117 (2017).
4. Gugliucci, A.et al.Short-term low calorie diet intervention reduces serum advanced glycation end products in healthy overweight or obese adults.Ann. Nutr. Metab. 54, 197-201 (2009).
5. Khan F. Z.Advances in hepatocellular carcinoma: nonalcoholic steatohepatitis-related hepatocellular carcinoma.World J. Hepatol. 7, 2155(2015).
6. Ding, N.et al.Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes.Gut 69, 1608-1619 (2020).
7. Li, L.et al.High-fat diet exacerbates periodontitis: is it because of dysbacteriosis or stem cell dysfunction?J. Biol. Regul. Homeost. Agents 35, 641-655 (2021).
8. Movassagh E. Z.& Vatanparast, H. Current evidence on the association of dietary patterns and bone health: a scoping review.Adv. Nutr. 8, 1-16 (2017).
9. Tian L.& Yu, X. Fat, sugar, and bone health: a complex relationship.Nutrients 9, 506(2017).
10. Kwon Y.-M., Kim G. W., Yim H. W., Paek Y. J.& Lee, K.-S. Association between dietary fat intake and bone mineral density in Korean adults: data from Korea National Health and Nutrition Examination Survey IV (2008 ~ 2009).Osteoporos. Int. 26, 969-976 (2015).
11. Felson D. T., Zhang Y., Hannan M. T.& Anderson, J. J. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study.J. Bone Min. Res. 8, 567-573 (1993).
12. Wardlaw G.Putting body weight and osteoporosis into perspective.Am. J. Clin. Nutr. 63, 433S-436S (1996).
13. Lecka-Czernik, B., Stechschulte, L. A., Czernik, P. J. & Dowling, A. R. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity.Mol. Cell Endocrinol. 410, 35-41 (2015).
14. Gonnelli S.Obesity and fracture risk.Clinical Cases Miner Bone Metabo. 11, 9-14 (2014).
15. Shapses, S. A., Pop, L. C.& Wang, Y. Obesity is a concern for bone health with aging.Nutr. Res. 39, 1-13 (2017).
16. Yang Y., Hu X.-M., Chen T.-J.& Bai, M.-J. Rural-urban differences of dietary patterns, overweight, and bone mineral status in Chinese students.Nutrients 8, 537(2016).
17. Marin C., Tuts J., Luyten F. P., Vandamme K.& Kerckhofs, G. Impaired soft and hard callus formation during fracture healing in diet-induced obese mice as revealed by 3D contrast-enhanced computed tomography imaging.Bone 150, 116008(2021).
18. Tian, L.et al.High fructose and high fat exert different effects on changes in trabecular bone micro-structure.J. Nutr. Health Aging 22, 361-370 (2018).
19. Florencio-Silva, R. et al. Biology of bone tissue: structure, function, and factors that influence Bone Cells.Biomed. Res. Int. 2015, 1-17 (2015).
20. Zheng, Z.-G.et al.Dual targeting of SREBP2 and ERRα by carnosic acid suppresses RANKL-mediated osteoclastogenesis and prevents ovariectomy-induced bone loss.Cell Death Differ. 27, 2048-2065 (2020).
21. Yan, B.et al.Obesity attenuates force-induced tooth movement in mice with the elevation of leptin level: a preliminary translational study.Am. J. Transl. Res. 10, 4107-4118 (2018).
22. Picke, A.-K.et al.Differential effects of high-fat diet and exercise training on bone and energy metabolism.Bone 116, 120-134 (2018).
23. Liu, F.et al.LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss.Redox Biol. 43, 101963(2021).
24. Infante A.& Rodríguez, C. I. Osteogenesis and aging: lessons from mesenchymal stem cells.Stem Cell Res. Ther. 9, 244(2018).
25. Feng X.& McDonald, J. M. Disorders of bone remodeling.Annu. Rev. Pathol. 6, 121-145 (2011).
26. Gao, Q.et al.Bone marrow mesenchymal stromal cells: identification, classification, and differentiation.Front. Cell Dev. Biol. 9, 787118(2021).
27. Wang, S.et al.BMSC-derived extracellular matrix better optimizes the microenvironment to support nerve regeneration.Biomaterials 280, 121251(2022).
28. Zhou, W., Liu, Q.& Xu, B. Improvement of bone defect healing in rats via mesenchymal stem cell supernatant.Exp. Ther. Med. 15, 1500-1504 (2018).
29. Ma, Q.et al.Bone mesenchymal stem cell secretion of sRANKL/OPG/M-CSF in response to macrophage-mediated inflammatory response influences osteogenesis on nanostructured Ti surfaces.Biomaterials 154, 234-247 (2018).
30. Li, X.et al.Dysfunction of metabolic activity of bone marrow mesenchymal stem cells in aged mice.Cell Prolif. 55, e13191(2022).
31. Wu, W.et al.JAK2/STAT3 regulates estrogen-related senescence of bone marrow stem cells.J. Endocrinol. 245, 141-153 (2020).
32. Bai, J.et al.Irradiation-induced senescence of bone marrow mesenchymal stem cells aggravates osteogenic differentiation dysfunction via paracrine signaling.Am. J. Physiol. Cell Physiol. 318, C1005-C1017 (2020).
33. Bidwell J. P., Alvarez M. B., Hood M.& Childress, P. Functional impairment of bone formation in the pathogenesis of osteoporosis: the bone marrow regenerative competence.Curr. Osteoporos. Rep. 11, 117-125 (2013).
34. Jiang Y., Zhang P., Zhang X., Lv L., & Zhou, Y. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis.Cell Prolif. 54, e12956(2020).
35. Pini, M.et al.Adipose tissue senescence is mediated by increased ATP content after a short‐term high‐fat diet exposure.Aging Cell 20, e13421(2021).
36. Chen, L.et al.Inhibition of secretin/secretin receptor axis ameliorates NAFLD phenotypes.Hepatology 74, 1845-1863 (2021).
37. Bi, J.et al.CXCL2 impairs functions of bone marrow mesenchymal stem cells and can serve as a serum marker in high-fat diet-fed rats.Front. Cell Dev. Biol. 9, 687942(2021).
38. Huang W., Hickson L. J., Eirin A., Kirkland J. L.& Lerman, L. O. Cellular senescence: the good, the bad and the unknown.Nat. Rev. Nephrol. 18, 611-627 (2022).
39. Wang, R.-R.et al.Dietary intervention preserves β cell function in mice through CTCF-mediated transcriptional reprogramming.J. Exp. Med. 219, e20211779(2022).
40. Qu, Y.-L.et al.Arid1a regulates insulin sensitivity and lipid metabolism.EBioMedicine 42, 481-493 (2019).
41. Klemm, S. L., Shipony, Z.& Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome.Nat. Rev. Genet. 20, 207-220 (2019).
42. Cabal-Hierro, L. et al. Chromatin accessibility promotes hematopoietic and leukemia stem cell activity.Nat. Commun. 11, 1406(2020).
43. Plum L. A.& DeLuca, H. F. Vitamin D, disease and therapeutic opportunities.Nat. Rev. Drug Discov. 9, 941-955 (2010).
44. Zhou, S., Geng, S.& Glowacki, J. Histone deacetylation mediates the rejuvenation of osteoblastogenesis by the combination of 25(OH)D3 and parathyroid hormone in MSCs from elders.J. Steroid Biochem. Mol. Biol. 136, 156-159 (2013).
45. Han, M.-S.et al.Functional cooperation between vitamin D receptor and Runx2 in vitamin D-induced vascular calcification.PLoS ONE 8, e83584(2013).
46. Haussler, M. R.et al.The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the “Fountain of Youth” to mediate healthful aging.J. Steroid Biochem. Mol. Biol. 121, 88-97 (2010).
47. Haussler, M. R.et al.1,25-Dihydroxyvitamin D and Klotho: a tale of two renal hormones coming of age.Vitam. Horm. 100, 165-230 (2016).
48. Liu, F.et al.S-sulfhydration of SIRT3 combats BMSC senescence and ameliorates osteoporosis via stabilizing heterochromatic and mitochondrial homeostasis.Pharm. Res. 192, 106788(2023).
49. Gong, L.et al.Human ESC‐sEVs alleviate age‐related bone loss by rejuvenating senescent bone marrow‐derived mesenchymal stem cells.J. Extracell. Vesicles 9, 1800971(2020).
50. Yang, R.et al.1,25-Dihydroxyvitamin D protects against age-related osteoporosis by a novel VDR-Ezh2-p16 signal axis.Aging Cell 19, 1-20 (2020).
51. Hu, M.et al.NAP1L2 drives mesenchymal stem cell senescence and suppresses osteogenic differentiation.Aging Cell 21, 1-11 (2022).
52. Beyaz, S.et al.High-fat diet enhances stemness and tumorigenicity of intestinal progenitors.Nature 531, 53-58 (2016).
53. Huang, Z.et al.Dual specificity phosphatase 12 regulates hepatic lipid metabolism through inhibition of the lipogenesis and apoptosis signal-regulating kinase 1 pathways.Hepatology 70, 1099-1118 (2019).
54. Chen, L.et al.1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling.Aging Cell 18, 1-18 (2019).
55. Chen, H.et al.SIRT1/FOXO3a axis plays an important role in the prevention of mandibular bone loss induced by 1,25(OH) 2 D deficiency.Int. J. Biol. Sci. 16, 2712-2726 (2020).
56. Xiao, Y.et al.High-fat diet selectively decreases bone marrow lin - / CD117 + cell population in aging mice through increased ROS production.J. Tissue Eng. Regen. Med. 14, 884-892 (2020).
57. Levings D. C., Lacher S. E., Palacios-Moreno, J. & Slattery, M. Transcriptional reprogramming by oxidative stress occurs within a predefined chromatin accessibility landscape.Free Radic. Biol. Med. 171, 319-331 (2021).
58. Pedro, N. F.et al.Candidate biomarkers for oral squamous cell carcinoma: differential expression of oxidative stress-related genes.Asian Pac. J. Cancer Prev. 19, 1343-1349 (2018).
59. Höhn, A.et al.Happily (n)ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence.Redox Biol. 11, 482-501 (2017).
60. Jung, Y. D.et al.Epigenetic regulation of miR-29a/miR-30c/DNMT3A axis controls SOD2 and mitochondrial oxidative stress in human mesenchymal stem cells.Redox Biol. 37, 101716(2020).
61. Bolduc, J. A., Collins, J. A.& Loeser, R. F. Reactive oxygen species, aging and articular cartilage homeostasis.Free Radic. Biol. Med. 132, 73-82 (2019).
62. Cutler R. G.Oxidative stress and aging: catalase is a longevity determinant enzyme.Rejuvenation Res. 8, 138-140 (2005).
63. Perelman, A.et al.JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry.Cell Death Dis. 3, e430(2012).
64. Rubio-Tomás, T., Rueda-Robles, A., Plaza-Díaz, J. & Álvarez-Mercado, A. I. Nutrition and cellular senescence in obesity-related disorders.J. Nutr. Biochem. 99, 108861(2022).
65. López-Otín, C., Galluzzi, L., Freije, J. M. P., Madeo, F. & Kroemer, G. Metabolic control of longevity.Cell 166, 802-821 (2016).
66. Kim, S. R.et al.Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin.Transl. Res. 213, 112-123 (2019).
67. Zhang, D.et al.Senolytic controls bone marrow mesenchymal stem cells fate improving bone formation.Am. J. Transl. Res. 12, 3078-3088 (2020).
68. Hanel, A., Malmberg, H. R.& Carlberg, C. Genome-wide effects of chromatin on vitamin d signaling.J. Mol. Endocrinol. 64, R45-R56 (2020).
69. Meyer M. B., Benkusky N. A., Sen B., Rubin J.& Pike, J. W. Epigenetic plasticity drives adipogenic and osteogenic differentiation of marrow-derived mesenchymal stem cells.J. Biol. Chem. 291, 17829-17847 (2016).
70. Erasmus, R.et al.Vitamin D, vitamin D-binding proteins, and VDR polymorphisms in individuals with hyperglycaemia.Nutrients 14, 3147(2022).
71. Bollen, S. E.et al.The vitamin D/vitamin D receptor (VDR) axis in muscle atrophy and sarcopenia.Cell Signal 96, 110355(2022).
72. Bocheva, G., Slominski, R. M.& Slominski, A. T. The impact of vitamin D on skin aging.Int. J. Mol. Sci. 22, 9097(2021).
73. Keisala, T.et al.Premature aging in vitamin D receptor mutant mice.J. Steroid Biochem. Mol. Biol. 115, 91-97 (2009).
74. Uthaiah C. A., Beeraka N. M., Rajalakshmi R., Ramya C. M.& Madhunapantula, S. V. Role of neural stem cells and vitamin D receptor (VDR)-mediated cellular signaling in the mitigation of neurological diseases.Mol. Neurobiol. 59, 4065-4105 (2022).
75. Sies H.& Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents.Nat. Rev. Mol. Cell Biol. 21, 363-383 (2020).
76. Gorgoulis, V.et al.Cellular senescence: defining a path forward.Cell 179, 813-827 (2019).
77. de Mello, A. H., Costa, A. B., Engel, J. D. G. & Rezin, G. T. Mitochondrial dysfunction in obesity.Life Sci. 192, 26-32 (2018).
78. Rojas-Morales, P., Pedraza-Chaverri, J. & Tapia, E. Ketone bodies, stress response, and redox homeostasis.Redox Biol. 29, 101395(2020).
79. Sies H.Oxidative stress: a concept in redox biology and medicine.Redox Biol. 4, 180-183 (2015).
80. Schoppa, A. M.et al.Osteoblast lineage Sod2 deficiency leads to an osteoporosis-like phenotype in mice.Dis. Model Mech. 15, dmm049392 (2022).
81. Zhang, Y.et al.Loss of manganese superoxide dismutase leads to abnormal growth and signal transduction in mouse embryonic fibroblasts.Free Radic. Biol. Med. 49, 1255-1262 (2010).
82. Skvortsova E. V., Nazarov I. B., Tomilin A. N.& Sinenko, S. A. Dual mode of mitochondrial ROS action during reprogramming to pluripotency.Int. J. Mol. Sci. 23, 10924(2022).
83. Han, H.et al.Obesity-induced vitamin D deficiency contributes to lung fibrosis and airway hyperresponsiveness.Am. J. Respir. Cell Mol. Biol. 64, 357-367 (2021).
84. Hyppönen E.& Boucher, B. J. Adiposity, vitamin D requirements, and clinical implications for obesity-related metabolic abnormalities.Nutr. Rev. 76, 678-692 (2018).
85. Roizen, J. D.et al.Obesity decreases hepatic 25‐hydroxylase activity causing low serum 25‐hydroxyvitamin D.J. Bone Miner. Res. 34, 1068-1073 (2019).
86. DeSmet, M. L. & Fleet, J. C. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression.J. Steroid Biochem. Mol. Biol. 173, 194-201 (2017).
87. Yuan, B.et al.Hexa-D-arginine treatment increases 7B2•PC2 activity in hyp-mouse osteoblasts and rescues the HYP phenotype.J. Bone Min. Res. 28, 56-72 (2013).
88. Tencerova, M.et al.High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice.J. Bone Miner. Res. 33, 1154-1165 (2018).
89. Dominici, M.et al.Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement.Cytotherapy 8, 315-317 (2006).
90. Pascual, G.et al.Targeting metastasis-initiating cells through the fatty acid receptor CD36.Nature 541, 41-45 (2017).
91. Carbon, S.et al.The Gene Ontology resource: enriching a GOld mine.Nucleic Acids Res. 49, D325-D334 (2021).
92. Ashburner, M.et al.Gene Ontology: tool for the unification of biology.Nat. Genet. 25, 25-29 (2000).
93. Zhang, Y.et al.Exosomes derived from 3D-cultured MSCs improve therapeutic effects in periodontitis and experimental colitis and restore the Th17 cell/Treg balance in inflamed periodontium.Int. J. Oral. Sci. 13, 43(2021).
PDF

Accesses

Citations

Detail

Sections
Recommended

/