m1A inhibition fuels oncolytic virus-elicited antitumor immunity via downregulating MYC/PD-L1 signaling

Shujin Li1, Tian Feng2, Yuantong Liu1, Qichao Yang1, An Song1, Shuo Wang1, Jun Xie3, Junjie Zhang1,3, Bifeng Yuan2, Zhijun Sun1,4

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 36. DOI: 10.1038/s41368-024-00304-0

m1A inhibition fuels oncolytic virus-elicited antitumor immunity via downregulating MYC/PD-L1 signaling

  • Shujin Li1, Tian Feng2, Yuantong Liu1, Qichao Yang1, An Song1, Shuo Wang1, Jun Xie3, Junjie Zhang1,3, Bifeng Yuan2, Zhijun Sun1,4
Author information +
History +

Abstract

N1-methyladenosine (m1A) RNA methylation is critical for regulating mRNA translation; however, its role in the development, progression, and immunotherapy response of head and neck squamous cell carcinoma (HNSCC) remains largely unknown. Using Tgfbr1 and Pten conditional knockout (2cKO) mice, we found the neoplastic transformation of oral mucosa was accompanied by increased m1A modification levels. Analysis of m1A-associated genes identified TRMT61A as a key m1A writer linked to cancer progression and poor prognosis. Mechanistically, TRMT61A-mediated tRNA-m1A modification promotes MYC protein synthesis, upregulating programmed death-ligand 1 (PD-L1) expression. Moreover, m1A modification levels were also elevated in tumors treated with oncolytic herpes simplex virus (oHSV), contributing to reactive PD-L1 upregulation. Therapeutic m1A inhibition sustained oHSV-induced antitumor immunity and reduced tumor growth, representing a promising strategy to alleviate resistance. These findings indicate that m1A inhibition can prevent immune escape after oHSV therapy by reducing PD-L1 expression, providing a mutually reinforcing combination immunotherapy approach.

Cite this article

Download citation ▾
Shujin Li, Tian Feng, Yuantong Liu, Qichao Yang, An Song, Shuo Wang, Jun Xie, Junjie Zhang, Bifeng Yuan, …Zhijun Sun. m1A inhibition fuels oncolytic virus-elicited antitumor immunity via downregulating MYC/PD-L1 signaling. International Journal of Oral Science, 2024, 16(0): 36 https://doi.org/10.1038/s41368-024-00304-0

References

1. Sung, H.et al.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin. 71, 209-249 (2021).
2. Johnson, D. E.et al.Head and neck squamous cell carcinoma.Nat. Rev. Dis. Primers 6, 92(2020).
3. Pulte D.& Brenner, H. Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis.Oncologist 15, 994-1001 (2010).
4. Gillen, S. L., Waldron, J. A.& Bushell, M. Codon optimality in cancer.Oncogene 40, 6309-6320 (2021).
5. Dominissini, D.et al.The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA.Nature 530, 441-446 (2016).
6. Li, J., Zhang, H.& Wang, H. N(1)-methyladenosine modification in cancer biology: Current status and future perspectives.Comput. Struct. Biotechnol. J. 20, 6578-6585 (2022).
7. Liu, Y.et al.tRNA-m(1)A modification promotes T cell expansion via efficient MYC protein synthesis.Nat. Immunol. 23, 1433-1444 (2022).
8. An Y.& Duan, H. The role of m6A RNA methylation in cancer metabolism.Mol. Cancer 21, 14(2022).
9. Li X., Ma S., Deng Y., Yi P.& Yu, J. Targeting the RNA m(6)A modification for cancer immunotherapy.Mol. Cancer 21, 76(2022).
10. Li S. J.& Sun, Z. J. Fueling immune checkpoint blockade with oncolytic viruses: current paradigms and challenges ahead.Cancer Lett. 550, 215937(2022).
11. Ramelyte, E.et al. Oncolytic virotherapy-mediated anti-tumor response: a single-cell perspective. Cancer Cell 39, 394-406.e394 (2021).
12. Liu Z., Ravindranathan R., Kalinski P., Guo Z. S.& Bartlett, D. L. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy.Nat. Commun. 8, 14754(2017).
13. Zamarin, D.et al.PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy.J. Clin. Invest. 128, 1413-1428 (2018).
14. Meyer N.& Penn, L. Z. Reflecting on 25 years with MYC.Nat. Rev. Cancer 8, 976-990 (2008).
15. Kress, T. R., Sabò, A.& Amati, B. MYC: connecting selective transcriptional control to global RNA production.Nat. Rev. Cancer 15, 593-607 (2015).
16. Conacci-Sorrell, M., McFerrin, L. & Eisenman, R. N. An overview of MYC and its interactome.Cold Spring Harb. Perspect. Med. 4, a014357(2014).
17. Casey, S. C.et al.MYC regulates the antitumor immune response through CD47 and PD-L1.Science 352, 227-231 (2016).
18. Adams, J. M.et al.The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice.Nature 318, 533-538 (1985).
19. Dalla-Favera, R. et al. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells.Proc. Natl Acad. Sci. USA 79, 7824-7827 (1982).
20. Stock C., Kager L., Fink F. M., Gadner H.& Ambros, P. F. Chromosomal regions involved in the pathogenesis of osteosarcomas.Genes Chromosomes Cancer 28, 329-336 (2000).
21. Sodir, N. M.et al.MYC instructs and maintains pancreatic adenocarcinoma phenotype.Cancer Discov. 10, 588-607 (2020).
22. Lourenco, C.et al.Modelling the MYC-driven normal-to-tumour switch in breast cancer.Dis. Model Mech. 12, dmm038083 (2019).
23. Mittal D., Gubin M. M., Schreiber R. D.& Smyth, M. J. New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape.Curr. Opin. Immunol. 27, 16-25 (2014).
24. Schreiber, R. D., Old, L. J.& Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion.Science 331, 1565-1570 (2011).
25. Dhanasekaran, R.et al.The MYC oncogene - the grand orchestrator of cancer growth and immune evasion.Nat. Rev. Clin. Oncol. 19, 23-36 (2022).
26. Sun, Z. J.et al.Chemopreventive and chemotherapeutic actions of mTOR inhibitor in genetically defined head and neck squamous cell carcinoma mouse model.Clin. Cancer Res. 18, 5304-5313 (2012).
27. Safra, M.et al.The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution.Nature 551, 251-255 (2017).
28. Li, X.et al. Base-resolution mapping reveals distinct m(1)A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell 68, 993-1005.e1009 (2017).
29. Choi, J. H.et al.Single-cell transcriptome profiling of the stepwise progression of head and neck cancer.Nat. Commun. 14, 1055(2023).
30. Benassayag, C.et al.Human c-Myc isoforms differentially regulate cell growth and apoptosis inDrosophila melanogaster. Mol. Cell Biol. 25, 9897-9909 (2005).
31. Hanahan D.& Weinberg, R. A. Hallmarks of cancer: the next generation.Cell 144, 646-674 (2011).
32. Schimmel P.The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis.Nat. Rev. Mol. Cell Biol. 19, 45-58 (2018).
33. Song, J.et al.Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation.Nat. Chem. Biol. 16, 160-169 (2020).
34. Sri-Ngern-Ngam, K., Keawvilai, P., Pisitkun, T. & Palaga, T. Upregulation of programmed cell death 1 by interferon gamma and its biological functions in human monocytes.Biochem. Biophys. Rep. 32, 101369(2022).
35. Wang, Y.et al.N(1)-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism.Nat. Commun. 12, 6314(2021).
36. Wen, S.et al.TCF-1 maintains CD8(+) T cell stemness in tumor microenvironment.J. Leukoc. Biol. 110, 585-590 (2021).
37. Mammadli M., Suo L., Sen J. M.& Karimi, M. TCF-1 is required for CD4 T cell persistence functions during alloImmunity.Int. J. Mol. Sci. 24, 4326(2023).
38. Silaeva, Y. Y.et al.Decrease in pool of T lymphocytes with surface phenotypes of effector and central memory cells under influence of TCR transgenic β-chain expression.Biochemistry 78, 549-559 (2013).
39. Pan Y., Yu Y., Wang X.& Zhang, T. Tumor-associated macrophages in tumor immunity.Front. Immunol. 11, 583084(2020).
40. Yardimci G., Kutlubay Z., Engin B.& Tuzun, Y. Precancerous lesions of oral mucosa.World J. Clin. Cases 2, 866-872 (2014).
41. Su, Z.et al.TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer.Nat. Commun. 13, 2165(2022).
42. Yuan B. F.Assessment of DNA epigenetic modifications.Chem. Res. Toxicol. 33, 695-708 (2020).
43. Li Y., Choi P. S., Casey S. C., Dill D. L.& Felsher, D. W. MYC through miR-17-92 suppresses specific target genes to maintain survival, autonomous proliferation, and a neoplastic state.Cancer Cell 26, 262-272 (2014).
44. Wolf E., Lin C. Y., Eilers M.& Levens, D. L. Taming of the beast: shaping Myc-dependent amplification.Trends Cell Biol. 25, 241-248 (2015).
45. Bonner, J. A.et al.Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck.N. Engl. J. Med. 354, 567-578 (2006).
46. Burtness, B.et al.Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study.Lancet 394, 1915-1928 (2019).
47. Ferris, R. L.et al.Nivolumab for recurrent squamous-cell carcinoma of the head and neck.N. Engl. J. Med. 375, 1856-1867 (2016).
48. Seiwert, T. Y.et al.Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial.Lancet Oncol. 17, 956-965 (2016).
49. Liu Y. T.& Sun, Z. J. Turning cold tumors into hot tumors by improving T-cell infiltration.Theranostics 11, 5365-5386 (2021).
50. Wu Y., Chen W., Xu Z. P.& Gu, W. PD-L1 distribution and perspective for cancer immunotherapy-blockade, knockdown, or inhibition.Front. Immunol. 10, 2022(2019).
51. Yu, J.et al.Nuclear PD-L1 promotes EGR1-mediated angiogenesis and accelerates tumorigenesis.Cell Discov. 9, 33(2023).
52. Wang, C.et al.Alternative approaches to target Myc for cancer treatment.Signal Transduct. Target Ther. 6, 117(2021).
53. Oerum S., Dégut C., Barraud P.& Tisné, C. m1A post-transcriptional modification in tRNAs.Biomolecules 7, 20(2017).
54. Majeti, R.et al.CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells.Cell 138, 286-299 (2009).
55. Liu, Y.et al.LIMP-2 enhances cancer stem-like cell properties by promoting autophagy-induced GSK3β degradation in head and neck squamous cell carcinoma.Int. J. Oral Sci. 15, 24(2023).
56. Zhang, B.et al.Single-cell chemokine receptor profiles delineate the immune contexture of tertiary lymphoid structures in head and neck squamous cell carcinoma.Cancer Lett. 558, 216105(2023).
57. Liu, Y.et al.Knockdown of PGC1α suppresses dysplastic oral keratinocytes proliferation through reprogramming energy metabolism.Int. J. Oral Sci. 15, 37(2023).
58. Wang, Z.et al.Syngeneic animal models of tobacco-associated oral cancer reveal the activity of in situ anti-CTLA-4.Nat. Commun. 10, 5546(2019).
PDF

Accesses

Citations

Detail

Sections
Recommended

/