PDF
ARTICLE
Human dental pulp stem cells mitigate the neuropathology and cognitive decline via AKT-GSK3β-Nrf2 pathways in Alzheimer’s disease
- Wei Xiong1, Ye Liu1, Heng Zhou1, Junyi Li1, Shuili Jing1, Cailei Jiang2, Mei Li3, Yan He2,4, Qingsong Ye1,5
Author information
+
1. Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China;
2. Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China;
3. Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand;
4. Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA;
5. Department of Stomatology, Linhai Second People’s Hospital, Linhai, Zhejiang, China
Corresponding author: 2024-05-13
Show less
History
+
Received |
Revised |
Published |
01 Dec 2023 |
15 Mar 2024 |
01 Jan 2024 |
Issue Date |
|
10 Jul 2024 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Xiong, W.et al.Alzheimer’s disease: pathophysiology and dental pulp stem cells therapeutic prospects.Front. Cell Dev. Biol. 10, 999024(2022).
2. Dewanjee, S.et al.Altered glucose metabolism in Alzheimer’s disease: role of mitochondrial dysfunction and oxidative stress.Free Radic. Biol. Med. 193, 134-157 (2022).
3. Butterfield D. A.& Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease.Nat. Rev. Neurosci. 20, 148-160 (2019).
4. Huang, W. J., Zhang, X.& Chen, W. W. Role of oxidative stress in Alzheimer’s disease.Biomed. Rep. 4, 519-522 (2016).
5. Park, M. W.et al.NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases.Redox Biol. 41, 101947(2021).
6. Gowda, P., Reddy, P. H.& Kumar, S. Deregulated mitochondrial microRNAs in Alzheimer’s disease: focus on synapse and mitochondria.Ageing Res Rev. 73, 101529(2022).
7. Bahn, G.et al.NRF2/ARE pathway negatively regulates BACE1 expression and ameliorates cognitive deficits in mouse Alzheimer’s models.Proc. Natl Acad. Sci. USA 116, 12516-12523 (2019).
8. Liao, S.et al.A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: role of Akt(Ser473)/GSK3beta(Ser9)-mediated Nrf2 activation.Redox Biol. 36, 101644(2020).
9. Ramsey, C. P.et al.Expression of Nrf2 in neurodegenerative diseases.J. Neuropathol. Exp. Neurol. 66, 75-85 (2007).
10. Kanninen, K.et al.Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease.Proc. Natl Acad. Sci. USA 106, 16505-16510 (2009).
11. Uccelli A., Benvenuto F., Laroni A.& Giunti, D. Neuroprotective features of mesenchymal stem cells.Best. Pr. Res Clin. Haematol. 24, 59-64 (2011).
12. Jia, Y.et al.HGF mediates clinical-grade human umbilical cord-derived mesenchymal stem cells improved functional recovery in a senescence-accelerated mouse model of Alzheimer’s disease.Adv. Sci. 7, 1903809(2020).
13. Lee, J. K.et al.Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses.Stem Cells 28, 329-343 (2010).
14. Shi, Y.et al.Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model.J. Exp. Med. 216, 2546-2561 (2019).
15. Hanisch U. K.& Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain.Nat. Neurosci. 10, 1387-1394 (2007).
16. Pan, L. L.et al.Shizukaol B, an active sesquiterpene from Chloranthus henryi, attenuates LPS-induced inflammatory responses in BV2 microglial cells.Biomed. Pharmacother. 88, 878-884 (2017).
17. Kim K. W., Lee Y. S., Choi B. R., Yoon, D. & Lee, D. Y. Anti-neuroinflammatory effect of the ethanolic extract of black ginseng through TLR4-MyD88-regulated inhibition of NF-kappaB and MAPK signaling pathways in LPS-induced BV2 microglial cells. Int. J. Mol. Sci. https://doi.org/10.3390/ijms242015320 (2023).
18. Vasic, V., Barth, K. & Schmidt, M. H. H. Neurodegeneration and neuro-regeneration-Alzheimer’s disease and stem cell therapy. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20174272 (2019).
19. Yang X., Xu S., Qian Y.& Xiao, Q. Resveratrol regulates microglia M1/M2 polarization via PGC-1alpha in conditions of neuroinflammatory injury.Brain Behav. Immun. 64, 162-172 (2017).
20. Peace, C. G. & O’Neill, L. A. The role of itaconate in host defense and inflammation. J. Clin. Invest. https://doi.org/10.1172/JCI148548 (2022).
21. Ahmed S. M., Luo L., Namani A., Wang X. J.& Tang, X. Nrf2 signaling pathway: pivotal roles in inflammation.Biochim. Biophys. Acta Mol. Basis Dis. 1863, 585-597 (2017).
22. Farhat F., Nofal S., Raafat E. M.& Eissa Ahmed, A. A. Akt/GSK3beta/Nrf2/HO-1 pathway activation by flurbiprofen protects the hippocampal neurons in a rat model of glutamate excitotoxicity.Neuropharmacology 196, 108654(2021).
23. Millan Solano, M. V.et al. Effect of systemic inflammation in the CNS: a silent history of neuronal damage. Int. J. Mol. Sci. https://doi.org/10.3390/ijms241511902 (2023).
24. Bian, Y.et al.Oxyphylla A ameliorates cognitive deficits and alleviates neuropathology via the Akt-GSK3beta and Nrf2-Keap1-HO-1 pathways in vitro and in vivo murine models of Alzheimer’s disease.J. Adv. Res. 34, 1-12 (2021).
25. Appel S. H., Zhao W., Beers D. R.& Henkel, J. S. The microglial-motoneuron dialogue in ALS.Acta Myol. 30, 4-8 (2011).
26. Hu, N. W., Ondrejcak, T.& Rowan, M. J. Glutamate receptors in preclinical research on Alzheimer’s disease: update on recent advances.Pharm. Biochem. Behav. 100, 855-862 (2012).
27. Du, W.et al.Engineering of electrospun nanofiber scaffolds for repairing brain injury.Eng. Regen. 4, 289-303 (2023).
28. Navarro A.& Boveris, A. The mitochondrial energy transduction system and the aging process.Am. J. Physiol. Cell Physiol. 292, C670-C686 (2007).
29. Swerdlow, R. H., Burns, J. M.& Khan, S. M. The Alzheimer’s disease mitochondrial cascade hypothesis.J. Alzheimers Dis. 20, S265-S279 (2010).
30. Mehta A., Prabhakar M., Kumar P., Deshmukh R.& Sharma, P. L. Excitotoxicity: bridge to various triggers in neurodegenerative disorders.Eur. J. Pharm. 698, 6-18 (2013).
31. Qiu, J.et al.Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals.Nat. Commun. 4, 2034(2013).
32. Mattson M. P.Pathways towards and away from Alzheimer’s disease.Nature 430, 631-639 (2004).
33. Cheignon, C.et al.Oxidative stress and the amyloid beta peptide in Alzheimer’s disease.Redox Biol. 14, 450-464 (2018).
34. Santamaria, G.et al.Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer’s mice.Cell Death Differ. 28, 203-218 (2021).
35. Penzes P., Cahill M. E., Jones K. A., VanLeeuwen, J. E. & Woolfrey, K. M. Dendritic spine pathology in neuropsychiatric disorders.Nat. Neurosci. 14, 285-293 (2011).
36. Lim, J. Y.et al.Potential application of human neural crest-derived nasal turbinate stem cells for the treatment of neuropathology and impaired cognition in models of Alzheimer’s disease.Stem Cell Res. Ther. 12, 402(2021).
37. Keating A.Mesenchymal stromal cells: new directions.Cell Stem Cell 10, 709-716 (2012).
38. Niraula, A., Sheridan, J. F.& Godbout, J. P. Microglia priming with aging and stress.Neuropsychopharmacology 42, 318-333 (2017).
39. Sochocka, M., Diniz, B. S.& Leszek, J. Inflammatory response in the CNS: friend or foe?Mol. Neurobiol. 54, 8071-8089 (2017).
40. Adibhatla R. M.& Hatcher, J. F. Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities.Antioxid. Redox Signal 12, 125-169 (2010).
41. Huang, Q.et al.Pathological BBB crossing melanin-like nanoparticles as metal-ion chelators and neuroinflammation regulators against Alzheimer’s disease.Research 6, 0180(2023).
42. Spires-Jones, T. L. & Hyman, B. T. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease.Neuron 82, 756-771 (2014).
43. Tonelli, C., Chio, I. I.C. & Tuveson, D. A. Transcriptional Regulation by Nrf2.Antioxid. Redox Signal 29, 1727-1745 (2018).
44. Brazil, D. P., Yang, Z. Z.& Hemmings, B. A. Advances in protein kinase B signalling: AKTion on multiple fronts.Trends Biochem. Sci. 29, 233-242 (2004).
45. Zou, Y.et al.Protective effect of puerarin against beta-amyloid-induced oxidative stress in neuronal cultures from rat hippocampus: involvement of the GSK-3beta/Nrf2 signaling pathway.Free Radic. Res. 47, 55-63 (2013).
46. Gameiro, I.et al.Discovery of the first dual GSK3beta inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer’s disease.Sci. Rep. 7, 45701(2017).
47. Belfiore, R.et al.Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice.Aging Cell 18, e12873(2019).
48. Wu X., Xu Y., Chen G., Tan Q.& Zhu, Y. Transplanted brain organoids become mature and intelligent.Biomed. Technol. 1, 48-51 (2023).
49. Shu, Y.et al.Metal protoporphyrin-induced self-assembly nanoprobe enabling precise tracking and antioxidant protection of stem cells for ischemic stroke therapy. Smart Med. https://doi.org/10.1002/SMMD.20220037(2023).
50. Wang Z. B., Wang Z. T., Sun Y., Tan L.& Yu, J. T. The future of stem cell therapies of Alzheimer’s disease.Ageing Res. Rev. 80, 101655(2022).