Phenformin activates ER stress to promote autophagic cell death via NIBAN1 and DDIT4 in oral squamous cell carcinoma independent of AMPK

Dexuan Zhuang1,2, Shuangshuang Wang1, Huiting Deng2, Yuxin Shi2, Chang Liu1, Xue Leng1, Qun Zhang1, Fuxiang Bai1, Bin Zheng3, Jing Guo1,2, Xunwei Wu1,2

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 35. DOI: 10.1038/s41368-024-00297-w
ARTICLE

Phenformin activates ER stress to promote autophagic cell death via NIBAN1 and DDIT4 in oral squamous cell carcinoma independent of AMPK

  • Dexuan Zhuang1,2, Shuangshuang Wang1, Huiting Deng2, Yuxin Shi2, Chang Liu1, Xue Leng1, Qun Zhang1, Fuxiang Bai1, Bin Zheng3, Jing Guo1,2, Xunwei Wu1,2
Author information +
History +

Abstract

The efficient clinical treatment of oral squamous cell carcinoma (OSCC) is still a challenge that demands the development of effective new drugs. Phenformin has been shown to produce more potent anti-tumor activities than metformin on different tumors, however, not much is known about the influence of phenformin on OSCC cells. We found that phenformin suppresses OSCC cell proliferation, and promotes OSCC cell autophagy and apoptosis to significantly inhibit OSCC cell growth both in vivo and in vitro. RNA-seq analysis revealed that autophagy pathways were the main targets of phenformin and identified two new targets DDIT4 (DNA damage inducible transcript 4) and NIBAN1 (niban apoptosis regulator 1). We found that phenformin significantly induces the expression of both DDIT4 and NIBAN1 to promote OSCC autophagy. Further, the enhanced expression of DDIT4 and NIBAN1 elicited by phenformin was not blocked by the knockdown of AMPK but was suppressed by the knockdown of transcription factor ATF4 (activation transcription factor 4), which was induced by phenformin treatment in OSCC cells. Mechanistically, these results revealed that phenformin triggers endoplasmic reticulum (ER) stress to activate PERK (protein kinase R-like ER kinase), which phosphorylates the transitional initial factor eIF2, and the increased phosphorylation of eIF2 leads to the increased translation of ATF4. In summary, we discovered that phenformin induces its new targets DDIT4 and especially NIBAN1 to promote autophagic and apoptotic cell death to suppress OSCC cell growth. Our study supports the potential clinical utility of phenformin for OSCC treatment in the future.

Cite this article

Download citation ▾
Dexuan Zhuang, Shuangshuang Wang, Huiting Deng, Yuxin Shi, Chang Liu, Xue Leng, Qun Zhang, Fuxiang Bai, Bin Zheng, Jing Guo, …Xunwei Wu. Phenformin activates ER stress to promote autophagic cell death via NIBAN1 and DDIT4 in oral squamous cell carcinoma independent of AMPK. International Journal of Oral Science, 2024, 16(0): 35 https://doi.org/10.1038/s41368-024-00297-w

References

1. Zibelman M.& Mehra, R. Overview of current treatment options and investigational targeted therapies for locally advanced squamous cell carcinoma of the head and neck.Am. J. Clin. Oncol. 39, 396-406 (2016).
2. Cohen E. E.W. et al. The society for immunotherapy of cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC).J. Immunother. Cancer 7, 184(2019).
3. Bugshan A.& Farooq, I. Oral squamous cell carcinoma: metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis.F1000Res. 9, 229(2020).
4. Li H., Zhang Y., Xu M.& Yang, D. Current trends of targeted therapy for oral squamous cell carcinoma.J. Cancer Res. Clin. Oncol. 148, 2169-2186 (2022).
5. Leemans, C. R., Snijders, P. J.F. & Brakenhoff, R. H. The molecular landscape of head and neck cancer.Nat. Rev. Cancer 18, 269-282 (2018).
6. William W. N.Jr. et al. Erlotinib and the risk of oral cancer: the erlotinib prevention of oral cancer (EPOC) randomized clinical trial.JAMA Oncol. 2, 209-216 (2016).
7. Cheung, L. C.et al.Risk-based selection of individuals for oral cancer screening.J. Clin. Oncol. 39, 663-674 (2021).
8. Ho, A. S.et al.Metastatic lymph node burden and survival in oral cavity cancer.J. Clin. Oncol. 35, 3601-3609 (2017).
9. Abd El-Aziz Y. S., Leck L. Y. W., Jansson, P. J. & Sahni, S. Emerging role of autophagy in the development and progression of oral squamous cell carcinoma. Cancers 13. https://doi.org/10.3390/cancers13246152 (2021).
10. Gou, Q., Zheng, L. L.& Huang, H. Unravelling the roles of autophagy in OSCC: a renewed perspective from mechanisms to potential applications.Front. Pharmacol. 13, 994643(2022).
11. Yang Y., Chen D., Liu H.& Yang, K. Increased expression of lncRNA CASC9 promotes tumor progression by suppressing autophagy-mediated cell apoptosis via the AKT/mTOR pathway in oral squamous cell carcinoma.Cell Death Dis. 10, 41(2019).
12. Wang, L., Klionsky, D. J.& Shen, H. M. The emerging mechanisms and functions of microautophagy.Nat. Rev. Mol. Cell Biol. 24, 186-203 (2023).
13. Zhang, J.et al.Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy.Cell. Mol. Life Sci. 75, 1803-1826 (2018).
14. Yun, C. W. & Lee, S. H. The roles of autophagy in cancer. Int. J. Mol. Sci. 19. https://doi.org/10.3390/ijms19113466 (2018).
15. Lin, C. W.et al.Ursolic acid induces apoptosis and autophagy in oral cancer cells.Environ. Toxicol. 34, 983-991 (2019).
16. Wang, Y.et al.Decrease of autophagy activity promotes malignant progression of tongue squamous cell carcinoma.J. Oral Pathol. Med. 42, 557-564 (2013).
17. Kapoor V., Paliwal D., Baskar Singh, S., Mohanti, B. K. & Das, S. N. Deregulation of Beclin 1 in patients with tobacco-related oral squamous cell carcinoma.Biochem. Biophys. Res. Commun. 422, 764-769 (2012).
18. Weng, J.et al.Beclin1 inhibits proliferation, migration and invasion in tongue squamous cell carcinoma cell lines.Oral Oncol. 50, 983-990 (2014).
19. Wang X., Li S., Wu S., Xie L.& Wang, P. Silence of Beclin1 in oral squamous cell carcinoma cells promotes proliferation, inhibits apoptosis, and enhances chemosensitivity.Int. J. Clin. Exp. Pathol. 10, 8424-8433 (2017).
20. Tseng, H. W., Li, S. C. & Tsai, K. W. Metformin treatment suppresses melanoma cell growth and motility through modulation of microRNA Expression. Cancers 11. https://doi.org/10.3390/cancers11020209 (2019).
21. Kim, S. H.et al.Phenformin inhibits myeloid-derived suppressor cells and enhances the anti-tumor activity of PD-1 blockade in melanoma.J. Investig. Dermatol. 137, 1740-1748 (2017).
22. Jafari-Gharabaghlou, D. et al. Combination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells.Iran. J. Basic Med. Sci. 21, 1167-1173 (2018).
23. Coperchini, F.et al.The anti-cancer effects of phenformin in thyroid cancer cell lines and in normal thyrocytes.Oncotarget 10, 6432-6443 (2019).
24. Park S., Willingham M. C., Qi J.& Cheng, S. Y. Metformin and JQ1 synergistically inhibit obesity-activated thyroid cancer.Endocr. Relat. Cancer 25, 865-877 (2018).
25. Janzer, A.et al.Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells.Proc. Natl Acad. Sci. USA 111, 10574-10579 (2014).
26. Rena, G., Hardie, D. G.& Pearson, E. R. The mechanisms of action of metformin.Diabetologia 60, 1577-1585 (2017).
27. Xia, C.et al.Metformin combined with nelfinavir induces SIRT3/mROS-dependent autophagy in human cervical cancer cells and xenograft in nude mice.Eur. J. Pharmacol. 848, 62-69 (2019).
28. Chen, C.et al.Metformin exerts anti-AR-negative prostate cancer activity via AMPK/autophagy signaling pathway.Cancer Cell Int. 21, 404(2021).
29. Zhuang, D.et al.Phenformin suppresses angiogenesis through the regulation of exosomal microRNA-1246 and microRNA-205 levels derived from oral squamous cell carcinoma cells.Front. Oncol. 12, 943477(2022).
30. Pei F., Wang H. S., Chen Z.& Zhang, L. Autophagy regulates odontoblast differentiation by suppressing NF-κB activation in an inflammatory environment.Cell Death Dis. 7, e2122(2016).
31. Wang, Y.et al.Baicalein upregulates DDIT4 expression which mediates mTOR inhibition and growth inhibition in cancer cells.Cancer Lett. 358, 170-179 (2015).
32. Yang Z.& Xia, L. Resveratrol inhibits the proliferation, invasion, and migration, and induces the apoptosis of human gastric cancer cells through the MALAT1/miR-383-5p/DDIT4 signaling pathway.J. Gastrointest. Oncol. 13, 985-996 (2022).
33. Ayesha, M.et al.MiR-4521 plays a tumor repressive role in growth and metastasis of hepatocarcinoma cells by suppressing phosphorylation of FAK/AKT pathway via targeting FAM129A.J. Adv. Res. 36, 147-161 (2022).
34. Jang, S. K.et al.Inhibition of mTORC1 through ATF4-induced REDD1 and Sestrin2 expression by Metformin.BMC Cancer 21, 803(2021).
35. Nozima, B. H.et al.FAM129A regulates autophagy in thyroid carcinomas in an oncogene-dependent manner.Endocr. Relat. Cancer 26, 227-238 (2019).
36. Tang, S.et al.Niban protein regulates apoptosis in HK-2 cells via caspase-dependent pathway.Ren. Fail. 41, 455-466 (2019).
37. Han, S.et al.Targeting ATF4-dependent pro-survival autophagy to synergize glutaminolysis inhibition.Theranostics 11, 8464-8479 (2021).
38. Mu, N.et al.Inhibition of SIRT1/2 upregulates HSPA5 acetylation and induces pro-survival autophagy via ATF4-DDIT4-mTORC1 axis in human lung cancer cells.Apoptosis 24, 798-811 (2019).
39. Whitney, M. L., Jefferson, L. S.& Kimball, S. R. ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression.Biochem. Biophys. Res. Commun. 379, 451-455 (2009).
40. Díaz-Bulnes, P., Saiz, M. L., López-Larrea, C. & Rodríguez, R. M. Crosstalk between hypoxia and ER stress response: a key regulator of macrophage polarization.Front. Immunol. 10, 2951(2019).
41. Zhao, H., Swanson, K. D.& Zheng, B. Therapeutic repurposing of biguanides in cancer.Trends Cancer 7, 714-730 (2021).
42. Garcia Rubino, M. E.et al. Phenformin as an anticancer agent: challenges and prospects. Int. J. Mol. Sci. 20. https://doi.org/10.3390/ijms20133316 (2019).
43. Choi K. S.Autophagy and cancer.Exp. Mol. Med. 44, 109-120 (2012).
44. White E.& DiPaola, R. S. The double-edged sword of autophagy modulation in cancer.Clin. Cancer Res. 15, 5308-5316 (2009).
45. Amaravadi, R. K.et al.Principles and current strategies for targeting autophagy for cancer treatment.Clin. Cancer Res. 17, 654-666 (2011).
46. Chen N.& Karantza-Wadsworth, V. Role and regulation of autophagy in cancer.Biochim. Biophys. Acta 1793, 1516-1523 (2009).
47. Kourelis T. V.& Siegel, R. D. Metformin and cancer: new applications for an old drug.Med. Oncol. 29, 1314-1327 (2012).
48. Wu, X. Y.et al.Mechanisms of cancer cell killing by metformin: a review on different cell death pathways.Mol. Cell. Biochem. 478, 197-214 (2023).
49. Zou G., Bai J., Li D.& Chen, Y. Effect of metformin on the proliferation, apoptosis, invasion and autophagy of ovarian cancer cells.Exp. Ther. Med. 18, 2086-2094 (2019).
50. Gao, C.et al.Metformin Induces autophagy via the AMPK-mTOR signaling pathway in human hepatocellular carcinoma cells.Cancer Manag. Res. 12, 5803-5811 (2020).
51. Hu, S.et al.Phenformin inhibits cell proliferation and induces cell apoptosis and autophagy in cholangiocarcinoma.Mol. Med. Rep. 17, 6028-6032 (2018).
52. Button R. W., Roberts S. L., Willis T. L., Hanemann C. O.& Luo, S. Accumulation of autophagosomes confers cytotoxicity.J. Biol. Chem. 292, 13599-13614 (2017).
53. Sofer A., Lei K., Johannessen C. M.& Ellisen, L. W. Regulation of mTOR and cell growth in response to energy stress by REDD1.Mol. Cell. Biol. 25, 5834-5845 (2005).
54. Tirado-Hurtado, I., Fajardo, W. & Pinto, J. A. DNA damage inducible transcript 4 gene: the switch of the metabolism as potential target in cancer.Front. Oncol. 8, 106(2018).
55. Brugarolas, J.et al.Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex.Genes Dev. 18, 2893-2904 (2004).
56. Schupp, M.et al.Metabolite and transcriptome analysis during fasting suggest a role for the p53-Ddit4 axis in major metabolic tissues.BMC Genom. 14, 758(2013).
57. Simonson, B.et al. DDiT4L promotes autophagy and inhibits pathological cardiac hypertrophy in response to stress. Sci. Signal. 10. https://doi.org/10.1126/scisignal.aaf5967 (2017).
58. Diana P.& Carvalheira, G. M. G. NIBAN1, exploring its roles in cell survival under stress context.Front. Cell Dev. Biol. 10, 867003(2022).
59. Qaisiya M., Mardesic P., Pastore B., Tiribelli C.& Bellarosa, C. The activation of autophagy protects neurons and astrocytes against bilirubin-induced cytotoxicity.Neurosci. Lett. 661, 96-103 (2017).
60. Zhang, Y.et al.Role of autophagy mediated by AMPK/DDiT4/mTOR Axis in HT22 cells under oxygen and glucose deprivation/reoxygenation.ACS Omega 8, 9221-9229 (2023).
61. Kalender, A.et al.Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner.Cell Metab. 11, 390-401 (2010).
62. Zu, T.et al.Up-regulation of activating transcription factor 3 in human fibroblasts inhibits melanoma cell growth and migration through a paracrine pathway.Front. Oncol. 10, 624(2020).
63. Dey, S.et al.Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response.J. Biol. Chem. 285, 33165-33174 (2010).
64. Vattem K. M.& Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells.Proc. Natl Acad. Sci. USA 101, 11269-11274 (2004).
65. Liu Z., Lv Y., Zhao N., Guan G.& Wang, J. Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate.Cell Death Dis. 6, e1822(2015).
66. B’Chir, W.et al. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression.Nucleic Acids Res. 41, 7683-7699 (2013).
67. Dennis M. D.,McGhee, N. K., Jefferson, L. S. & Kimball, S. R. Regulated in DNA damage and development 1 (REDD1) promotes cell survival during serum deprivation by sustaining repression of signaling through the mechanistic target of rapamycin in complex 1 (mTORC1).Cell. Signal. 25, 2709-2716 (2013).
68. Rozpedek, W.et al.The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress.Curr. Mol. Med. 16, 533-544 (2016).
69. Xie, Z.et al.Isolation and culture of primary human gingival epithelial cells using Y-27632.J. Vis. Exp. 177, 1-15 (2021).
70. Liu, C.et al.Y-27632 enriches the yield of human melanocytes from adult skin tissues.J. Vis. Exp. 161, 1-11 (2020).
71. Wen, J.et al.A carbazole compound, 9-ethyl-9H-carbazole-3-carbaldehyde, plays an antitumor function through reactivation of the p53 pathway in human melanoma cells.Cell Death Dis. 12, 591(2021).
72. Chang, F.et al.ROCK inhibitor enhances the growth and migration of BRAF-mutant skin melanoma cells.Cancer Sci. 109, 3428-3437 (2018).
PDF

Accesses

Citations

Detail

Sections
Recommended

/