Tetrahedral framework nucleic acids/hyaluronic acid-methacrylic anhydride hybrid hydrogel with antimicrobial and anti-inflammatory properties for infected wound healing

Cai Qi1, Qiang Sun1,2, Dexuan Xiao1, Mei Zhang1, Shaojingya Gao1, Bin Guo3, Yunfeng Lin1,2

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 30. DOI: 10.1038/s41368-024-00290-3
ARTICLE

Tetrahedral framework nucleic acids/hyaluronic acid-methacrylic anhydride hybrid hydrogel with antimicrobial and anti-inflammatory properties for infected wound healing

  • Cai Qi1, Qiang Sun1,2, Dexuan Xiao1, Mei Zhang1, Shaojingya Gao1, Bin Guo3, Yunfeng Lin1,2
Author information +
History +

Abstract

Bacterial resistance and excessive inflammation are common issues that hinder wound healing. Antimicrobial peptides (AMPs) offer a promising and versatile antibacterial option compared to traditional antibiotics, with additional anti-inflammatory properties. However, the applications of AMPs are limited by their antimicrobial effects and stability against bacterial degradation. TFNAs are regarded as a promising drug delivery platform that could enhance the antibacterial properties and stability of nanodrugs. Therefore, in this study, a composite hydrogel (HAMA/t-GL13K) was prepared via the photocross-linking method, in which tFNAs carry GL13K. The hydrogel was injectable, biocompatible, and could be instantly photocured. It exhibited broad-spectrum antibacterial and anti-inflammatory properties by inhibiting the expression of inflammatory factors and scavenging ROS. Thereby, the hydrogel inhibited bacterial infection, shortened the wound healing time of skin defects in infected skin full-thickness defect wound models and reduced scarring. The constructed HAMA/tFNA-AMPs hydrogels exhibit the potential for clinical use in treating microbial infections and promoting wound healing.

Cite this article

Download citation ▾
Cai Qi, Qiang Sun, Dexuan Xiao, Mei Zhang, Shaojingya Gao, Bin Guo, …Yunfeng Lin. Tetrahedral framework nucleic acids/hyaluronic acid-methacrylic anhydride hybrid hydrogel with antimicrobial and anti-inflammatory properties for infected wound healing. International Journal of Oral Science, 2024, 16(0): 30 https://doi.org/10.1038/s41368-024-00290-3

References

1. Guo, H. Q.et al.Epidemiology of maxillofacial soft tissue injuries in an oral emergency department in Beijing: a two-year retrospective study.Dent. Traumatol. 37, 479-487 (2021).
2. Zhou, J.et al.Oral and maxillofacial emergencies: A retrospective study of 5220 cases in West China.Dent. Traumatol. 39, 140-146 (2023).
3. Guo, H. Q., Yang, X., Wang, X. T., Ji, A. P. & Bai, J. Risk Factors for Infection of Sutured Maxillofacial Soft Tissue Injuries. Surg. Infect. (Larchmt.) 23, 298-303 (2022).
4. Percival, S. L.et al.A review of the scientific evidence for biofilms in wounds.Wound Repair Regen. 20, 647-657 (2012).
5. Prompers, L.et al.High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study.Diabetologia 50, 18-25 (2007).
6. Juhasz M. L.W. & Cohen, J. L. Microneedling for the treatment of scars: an update for clinicians.Clin. Cosmet. Investig. Dermatol. 13, 997-1003 (2020).
7. Deflorin, C.et al.Physical management of scar tissue: a systematic review and meta-analysis.J. Alter. Complement Med. 26, 854-865 (2020).
8. Lee M. R.& Paver, R. Prophylactic antibiotics in dermatological surgery.Australas. J. Dermatol. 57, 83-91 (2016).
9. Ciofu O., Moser C., Jensen P. O.& Hoiby, N. Tolerance and resistance of microbial biofilms.Nat. Rev. Microbiol. 20, 621-635 (2022).
10. Kalelkar, P. P., Riddick, M.& Garcia, A. J. Biomaterial-based delivery of antimicrobial therapies for the treatment of bacterial infections.Nat. Rev. Mater. 7, 39-54 (2022).
11. Slaughter B. V., Khurshid S. S., Fisher O. Z., Khademhosseini A.& Peppas, N. A. Hydrogels in regenerative medicine.Adv. Mater. 21, 3307-3329 (2009).
12. Eke G., Mangir N., Hasirci N., MacNeil, S. & Hasirci, V. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering.Biomaterials 129, 188-198 (2017).
13. Li, Y.et al.Hyaluronic acid-methacrylic anhydride/polyhexamethylene biguanide hybrid hydrogel with antibacterial and proangiogenic functions for diabetic wound repair.Chin. Chem. Lett. 33, 5030-5034 (2022).
14. Maloney, F. P.et al.Structure, substrate recognition and initiation of hyaluronan synthase.Nature 604, 195-201 (2022).
15. Khetan, S.et al.Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels.Nat. Mater. 12, 458-465 (2013).
16. Mookherjee N., Anderson M. A., Haagsman H. P.& Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential.Nat. Rev. Drug Discov. 19, 311-332 (2020).
17. Schneider, V. A.et al.Imaging the antimicrobial mechanism(s) of cathelicidin-2.Sci. Rep. 6, 32948(2016).
18. Hancock, R. E., Haney, E. F.& Gill, E. E. The immunology of host defence peptides: beyond antimicrobial activity.Nat. Rev. Immunol. 16, 321-334 (2016).
19. van der Does, A. M., Hiemstra, P. S. & Mookherjee, N. Antimicrobial host defence peptides: immunomodulatory functions and translational prospects.Adv. Exp. Med. Biol. 1117, 149-171 (2019).
20. Pezzulo, A. A.et al.Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung.Nature 487, 109-113 (2012).
21. Mallia, P.et al.Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease.Am. J. Respir. Crit. Care Med. 186, 1117-1124 (2012).
22. Pachon-Ibanez, M. E., Smani, Y., Pachon, J. & Sanchez-Cespedes, J. Perspectives for clinical use of engineered human host defense antimicrobial peptides.FEMS Microbiol. Rev. 41, 323-342 (2017).
23. Harmouche, N.et al.Solution and solid-state nuclear magnetic resonance structural investigations of the antimicrobial designer peptide GL13K in membranes.Biochemistry 56, 4269-4278 (2017).
24. Li, T.et al.Antibacterial activity and cytocompatibility of an implant coating consisting of TiO(2) nanotubes combined with a GL13K antimicrobial peptide.Int J. Nanomed. 12, 2995-3007 (2017).
25. Liu, Y.et al.Tetrahedral framework nucleic acids deliver antimicrobial peptides with improved effects and less susceptibility to bacterial degradation.Nano Lett. 20, 3602-3610 (2020).
26. Gera, S., Kankuri, E.& Kogermann, K. Antimicrobial peptides-unleashing their therapeutic potential using nanotechnology.Pharmacol. Ther. 232, 107990(2022).
27. Rajchakit, U.et al.Size-controlled synthesis of gold nanoparticles tethering antimicrobial peptides with potent broad-spectrum antimicrobial and antibiofilm activities.Mol. Pharm. 21, 596-608 (2024).
28. Maisetta G., Brancatisano F. L., Esin S., Campa M.& Batoni, G. Gingipains produced by Porphyromonas gingivalis ATCC49417 degrade human-beta-defensin 3 and affect peptide’s antibacterial activity in vitro.Peptides 32, 1073-1077 (2011).
29. Li S., Tian T., Zhang T., Cai X.& Lin, Y. Advances in biological applications of self-assembled DNA tetrahedral nanostructures.Mater. Today 24, 57-68 (2019).
30. Zhang, T., Tian, T.& Lin, Y. Functionalizing framework nucleic-acid-based nanostructures for biomedical application.Adv. Mater. 34, e2107820(2022).
31. Zhang, Q.et al.Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostructures via the modulation of macrophage responses.ACS Appl. Mater. Interfaces 10, 3421-3430 (2018).
32. Wiraja, C.et al.Framework nucleic acids as programmable carrier for transdermal drug delivery.Nat. Commun. 10, 1147(2019).
33. Tian, T.et al.A dynamic DNA tetrahedron framework for active targeting.Nat. Protoc. 18, 1028-1055 (2023).
34. Tian, T., Li, Y.& Lin, Y. Prospects and challenges of dynamic DNA nanostructures in biomedical applications.Bone Res. 10, 40(2022).
35. Zhang, B.et al.Facilitating in situ tumor imaging with a tetrahedral DNA framework‐enhanced hybridization chain reaction probe.Adv. Funct. Mater. 32, 2109728(2022).
36. Zhu, J.et al.Tetrahedral framework nucleic acids promote scarless healing of cutaneous wounds via the AKT-signaling pathway.Signal Transduct. Target Ther. 5, 120(2020).
37. Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: mechanisms, signaling,translation. Sci. Transl. Med. 6, 265sr266-265sr266 (2014).
38. Meng, Y.et al.Reactive metal boride nanoparticles trap lipopolysaccharide and peptidoglycan for bacteria-infected wound healing.Nat. Commun. 13, 7353(2022).
39. Rodrigues M., Kosaric N., Bonham C. A.& Gurtner, G. C. Wound healing: a cellular perspective.Physiol. Rev. 99, 665-706 (2019).
40. Kharaziha, M., Baidya, A.& Annabi, N. Rational design of immunomodulatory hydrogels for chronic wound healing.Adv. Mater. 33, e2100176(2021).
41. Chen, Y.et al.DNA framework signal amplification platform-based high-throughput systemic immune monitoring.Signal Transduct. Target. Ther. 9, 28(2024).
42. Zhang, T.et al.nanomaterials targeting toll‐like receptor 4 prevent bisphosphonate‐related osteonecrosis of the jaw via regulating mitochondrial homeostasis in macrophages.Adv. Funct. Mater. 33, 2213401(2023).
43. Zhang, T.et al.Myelosuppression alleviation and hematopoietic regeneration by tetrahedral‐framework nucleic‐acid nanostructures functionalized with osteogenic growth peptide.Adv. Sci. 9, 2202058(2022).
44. Wang, Y.et al.Tetrahedral framework nucleic acids can alleviate taurocholate-induced severe acute pancreatitis and its subsequent multiorgan injury in mice.Nano Lett. 22, 1759-1768 (2022).
45. Zhang, T.et al.Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment.Nat. Protoc. 15, 2728-2757 (2020).
46. Li, J.et al.Repair of infected bone defect with clindamycin-tetrahedral DNA nanostructure complex-loaded 3D bioprinted hybrid scaffold.Chem. Eng. J. 435, 134855(2022).
47. Qin, X.et al.Tetrahedral framework nucleic acids-based delivery of microRNA-155 inhibits choroidal neovascularization by regulating the polarization of macrophages.Bioact. Mater. 14, 134-144 (2022).
48. Gao, Y.et al.A lysosome‐activated tetrahedral Nanobox for encapsulated siRNA delivery.Adv. Mater. 34, 2201731(2022).
49. Ma, W.et al.Biomimetic nanoerythrosome‐coated aptamer-DNA tetrahedron/maytansine conjugates: pH‐responsive and targeted cytotoxicity for HER2‐positive breast cancer.Adv. Mater. 34, 2109609(2022).
50. Li, S.et al.A tetrahedral framework DNA‐based bioswitchable miRNA inhibitor delivery system: application to skin anti‐aging.Adv. Mater. 34, 2204287(2022).
51. Blaser H., Dostert C., Mak T. W.& Brenner, D. TNF and ROS Crosstalk in Inflammation.Trends Cell Biol. 26, 249-261 (2016).
52. Yan, R.et al.Typhaneoside-tetrahedral framework nucleic acids system: mitochondrial recovery and antioxidation for acute kidney injury treatment.ACS nano 17, 8767-8781 (2023).
53. Wang, Y.et al.The role of IL-1beta and TNF-alpha in intervertebral disc degeneration.Biomed. Pharmacother. 131, 110660(2020).
54. Wang, Q.et al.Modulation of cerebrospinal fluid dysregulation via a SPAK and OSR1 targeted framework nucleic acid in hydrocephalus. Adv. Sci. https://doi.org/10.1002/advs.202306622(2024).
55. Zhang, M.et al.Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis.Bioact. Mater. 8, 368-380 (2022).
56. Li, J.et al.Modulation of the crosstalk between Schwann cells and macrophages for nerve regeneration: a therapeutic strategy based on a multifunctional tetrahedral framework nucleic acids system.Adv. Mater. 34, 2202513(2022).
57. Liu, J.et al.A DNA-based nanocarrier for efficient gene delivery and combined cancer therapy.Nano Lett. 18, 3328-3334 (2018).
58. Guan, H. et al. Distribution and antibiotic resistance patterns of pathogenic bacteria in patients with chronic cutaneous wounds in China. Front Med. (Lausanne) 8, 609584 (2021).
59. Kaur G., Narayanan G., Garg D., Sachdev A.& Matai, I. Biomaterials-based regenerative strategies for skin tissue wound healing.ACS Appl. Bio. Mater. 5, 2069-2106 (2022).
60. Ju Y., Hu Y., Yang P., Xie X.& Fang, B. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration.Mater. Today Bio 18, 100522(2023).
61. Zhong, R.et al.Hydrogels for RNA delivery.Nat. Mater. 22, 818-831 (2023).
62. Ma, K.et al.Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: an in vivo study.J. Adv. Res. 23, 123-132 (2020).
63. Liu, N.et al.Construction of multifunctional hydrogel with metal-polyphenol capsules for infected full-thickness skin wound healing.Bioact. Mater. 24, 69-80 (2023).
64. Zhan Y., Zhou Z., Chen M.& Gong, X. Photothermal treatment of polydopamine nanoparticles@hyaluronic acid methacryloyl hydrogel against peripheral nerve adhesion in a rat model of sciatic nerve.Int. J. Nanomed. 18, 2777-2793 (2023).
65. Liang, Y.et al.Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full‐thickness skin regeneration during wound healing.Small 15, 1900046(2019).
66. Li M., Liang Y., Liang Y., Pan G.& Guo, B. Injectable stretchable self-healing dual dynamic network hydrogel as adhesive anti-oxidant wound dressing for photothermal clearance of bacteria and promoting wound healing of MRSA infected motion wounds.Chem. Eng. J. 427, 132039(2022).
67. Chiangnoon, R.et al.Antibacterial hydrogel sheet dressings composed of poly (vinyl alcohol) and silver nanoparticles by electron beam irradiation.Gels 9, 80(2023).
68. Zhang, X.et al.Tetrahedral-framework nucleic acids carry small interfering RNA to downregulate toll-like receptor 2 gene expression for the treatment of sepsis.ACS Appl. Mater. Interfaces 14, 6442-6452 (2022).
69. Lu, X.et al.Single-atom catalysts-based catalytic ROS clearance for efficient psoriasis treatment and relapse prevention via restoring ESR1.Nat. Commun. 14, 6767(2023).
70. Datt, S.et al.Gene expression profiling of protease and non-protease genes in Trichophyton mentagrophytes isolates from dermatophytosis patients by qRT-PCR analysis.Sci. Rep. 11, 403(2021).
71. Liu, L.et al.Thermosensitive hydrogel coupled with sodium ascorbyl phosphate promotes human umbilical cord-derived mesenchymal stem cell-mediated skin wound healing in mice.Sci. Rep. 13, 11909(2023).
PDF

Accesses

Citations

Detail

Sections
Recommended

/