PDF
ARTICLE
Digital pathology-based artificial intelligence models for differential diagnosis and prognosis of sporadic odontogenic keratocysts
- Xinjia Cai1, Heyu Zhang2, Yanjin Wang3, Jianyun Zhang1,4, Tiejun Li1,4
Author information
+
1. Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China;
2. Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China;
3. Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China;
4. Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
Corresponding author: 2024-02-26
Show less
History
+
Received |
Revised |
Published |
17 Sep 2023 |
24 Dec 2023 |
01 Jan 2024 |
Issue Date |
|
10 Jul 2024 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Boffano, P.et al.The epidemiology and management of odontogenic keratocysts (OKCs): a European multicenter study.J. Craniomaxillofac. Surg. 50, 1-6 (2022).
2. Li T. J.The odontogenic keratocyst: a cyst, or a cystic neoplasm?J. Dent. Res. 90, 133-142 (2011).
3. Mendes, R. A., Carvalho, J. F.& van der Waal, I. Characterization and management of the keratocystic odontogenic tumor in relation to its histopathological and biological features.Oral. Oncol. 46, 219-225 (2010).
4. Dhanuthai, K.et al.Cysts of the jaws: a multicentre study. Oral Dis., https://doi.org/10.1111/odi.14722(2023).
5 5.Wang, Y. J.et al. [Clinicopathological analysis of 844 cases of odontogenic keratocysts].Beijing Da Xue Xue Bao Yi Xue Ban. 52, 35-42 (2020).
6. Noy D., Rachmiel A., Zar K., Emodi O.& Nagler, R. M. Sporadic versus syndromic keratocysts-Can we predict treatment outcome? A review of 102 cysts.Oral. Dis. 23, 1058-1065 (2017).
7. Bresler, S. C., Padwa, B. L.& Granter, S. R. Nevoid basal cell carcinoma syndrome (Gorlin Syndrome).Head. Neck Pathol. 10, 119-124 (2016).
8. Pan S., Xu L. L., Sun L. S.& Li, T. J. Identification of known and novel PTCH mutations in both syndromic and non-syndromic keratocystic odontogenic tumors.Int J. Oral. Sci. 1, 34-38 (2009).
9. Vered M.& Wright, J. M. Update from the 5th edition of the World Health Organization classification of head and neck tumors: odontogenic and maxillofacial bone tumours.Head. Neck Pathol. 16, 63-75 (2022).
10. Wang Y. J., Zhang J. Y., Dong Q.& Li, T. J. Orthokeratinized odontogenic cysts: a clinicopathologic study of 159 cases and molecular evidence for the absence of PTCH1 mutations.J. Oral. Pathol. Med. 51, 659-665 (2022).
11. Dong Q., Pan S., Sun L. S.& Li, T. J. Orthokeratinized odontogenic cyst: a clinicopathologic study of 61 cases.Arch. Pathol. Lab Med. 134, 271-275 (2010).
12. Kaczmarzyk, T.et al.Investigation of clinicopathological parameters and expression of COX-2, bcl-2, PCNA, and p53 in primary and recurrent sporadic odontogenic keratocysts.Clin. Oral. Investig. 22, 3097-3106 (2018).
13. Cunha, J. F.et al.Clinicopathologic features associated with recurrence of the odontogenic keratocyst: a cohort retrospective analysis.Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radio. 121, 629-635 (2016).
14. Cottom H. E., Bshena F. I., Speight P. M., Craig G. T.& Jones, A. V. Histopathological features that predict the recurrence of odontogenic keratocysts.J. Oral. Pathol. Med. 41, 408-414 (2012).
15. Pan S.& Li, T. J. PTCH1 mutations in odontogenic keratocysts: are they related to epithelial cell proliferation?Oral. Oncol. 45, 861-865 (2009).
16. Kaplan I.& Hirshberg, A. The correlation between epithelial cell proliferation and inflammation in odontogenic keratocyst.Oral. Oncol. 40, 985-991 (2004).
17. Shmatko A.,Ghaffari Laleh, N., Gerstung, M. & Kather, J. N. Artificial intelligence in histopathology: enhancing cancer research and clinical oncology.Nat. Cancer 3, 1026-1038 (2022).
18. Foersch, S.et al. Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer. Nat. Med., https://doi.org/10.1038/s41591-022-02134-1 (2023).
19. Bashir R. M.S. et al. A digital score of peri-epithelial lymphocytic activity predicts malignant transformation in oral epithelial dysplasia. J. Pathol., https://doi.org/10.1002/path.6094(2023).
20. Zheng, X.et al.A deep learning model and human-machine fusion for prediction of EBV-associated gastric cancer from histopathology.Nat. Commun. 13, 2790(2022).
21. Yang, S. Y.et al.Histopathology-based diagnosis of oral squamous cell carcinoma using deep learning.J. Dent. Res. 101, 1321-1327 (2022).
22. Wang, R.et al.Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients.J. Hematol. Oncol. 15, 11(2022).
23. Vanguri, R. S.et al.Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer.Nat. Cancer 3, 1151-1164 (2022).
24. Saldanha, O. L.et al.Swarm learning for decentralized artificial intelligence in cancer histopathology.Nat. Med. 28, 1232-1239 (2022).
25. Fujii, S.et al.Rapid screening using pathomorphological interpretation to detect BRAFV600E mutation and microsatellite instability in colorectal cancer.Clin. Cancer Res. 28, 2623-2632 (2022).
26. Feng, L.et al.Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study.Lancet Digit. Health 4, e8-e17 (2022).
27. Chen, D.et al.Prognostic and predictive value of a pathomics signature in gastric cancer.Nat. Commun. 13, 6903(2022).
28. Klein, S.et al.Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains.Clin. Cancer Res. 27, 1131-1138 (2021).
29. Gehrung, M.et al.Triage-driven diagnosis of Barrett’s esophagus for early detection of esophageal adenocarcinoma using deep learning.Nat. Med. 27, 833-841 (2021).
30. Cai, X.et al.Development of a pathomics-based model for the prediction of malignant transformation in oral leukoplakia.Lab. Investig. 103, 100173(2023).
31. Lehman C. D.& Wu, S. Stargazing through the lens of AI in clinical oncology.Nat. Cancer 2, 1265-1267 (2021).
32. Bera K., Schalper K. A., Rimm D. L., Velcheti V.& Madabhushi, A. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology.Nat. Rev. Clin. Oncol. 16, 703-715 (2019).
33. Figueroa, A.et al.Keratocystic odontogenic tumor associated with nevoid basal cell carcinoma syndrome: similar behavior to sporadic type?Otolaryngol. Head. Neck Surg. 142, 179-183 (2010).
34. Qu, J.et al.Underestimated PTCH1 mutation rate in sporadic keratocystic odontogenic tumors.Oral. Oncol. 51, 40-45 (2015).
35. Qu, J.et al.PTCH1 alterations are frequent but other genetic alterations are rare in sporadic odontogenic keratocysts.Oral. Dis. 25, 1600-1607 (2019).
36. Kalogirou, E. M.et al.Decoding a gene expression program that accompanies the phenotype of sporadic and basal cell nevus syndrome-associated odontogenic keratocyst.J. Oral. Pathol. Med. 51, 649-658 (2022).
37. Verghese, G.et al.Computational pathology in cancer diagnosis, prognosis, and prediction—present day and prospects. J. Pathol., https://doi.org/10.1002/path.6163(2023).
38. Zhang, Q.et al.Deep learning to diagnose Hashimoto’s thyroiditis from sonographic images.Nat. Commun. 13, 3759(2022).
39. Boehm, K. M.et al.Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer.Nat. Cancer 3, 723-733 (2022).
40. Topol E. J.High-performance medicine: the convergence of human and artificial intelligence.Nat. Med. 25, 44-56 (2019).
41. Yilmaz, E., Kayikcioglu, T.& Kayipmaz, S. Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography.Comput. Methods Prog. Biomed. 146, 91-100 (2017).
42. Lee, J. H., Kim, D. H.& Jeong, S. N. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network.Oral. Dis. 26, 152-158 (2020).
43. Florindo, J. B., Bruno, O. M.& Landini, G. Morphological classification of odontogenic keratocysts using Bouligand-Minkowski fractal descriptors.Comput. Biol. Med. 81, 1-10 (2017).
44. Chai, Z. K.et al.Improved diagnostic accuracy of ameloblastoma and odontogenic keratocyst on cone-beam CT by artificial intelligence.Front. Oncol. 11, 793417(2021).
45. Bispo, M. S.et al.Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network.Dento Maxillo Facial Radiol. 50, 20210002(2021).
46. Frydenlund, A., Eramian, M.& Daley, T. Automated classification of four types of developmental odontogenic cysts.Comput. Med. Imaging Graph. 38, 151-162 (2014).
47. Pan S., Dong Q., Sun L. S.& Li, T. J. Mechanisms of inactivation of PTCH1 gene in nevoid basal cell carcinoma syndrome: modification of the two-hit hypothesis.Clin. Cancer Res. 16, 442-450 (2010).