The osteoclastic activity in apical distal region of molar mesial roots affects orthodontic tooth movement and root resorption in rats

Wenhao Zheng1,2,3, Xiaofeng Lu1,2,3, Guangjin Chen1,2,3, Yufeng Shen1,2,3,4, Xiaofei Huang1,2,3, Jinfeng Peng1,2,3, Jiajia Wang1,2,3, Ying Yin1,2,3, Wencheng Song1,2,3, Mengru Xie1,2,3, Shaoling Yu1,2,3, Lili Chen1,2,3

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 19. DOI: 10.1038/s41368-024-00284-1

The osteoclastic activity in apical distal region of molar mesial roots affects orthodontic tooth movement and root resorption in rats

  • Wenhao Zheng1,2,3, Xiaofeng Lu1,2,3, Guangjin Chen1,2,3, Yufeng Shen1,2,3,4, Xiaofei Huang1,2,3, Jinfeng Peng1,2,3, Jiajia Wang1,2,3, Ying Yin1,2,3, Wencheng Song1,2,3, Mengru Xie1,2,3, Shaoling Yu1,2,3, Lili Chen1,2,3
Author information +
History +

Abstract

The utilization of optimal orthodontic force is crucial to prevent undesirable side effects and ensure efficient tooth movement during orthodontic treatment. However, the sensitivity of existing detection techniques is not sufficient, and the criteria for evaluating optimal force have not been yet established. Here, by employing 3D finite element analysis methodology, we found that the apical distal region (A-D region) of mesial roots is particularly sensitive to orthodontic force in rats. Tartrate-resistant acidic phosphatase (TRAP)-positive osteoclasts began accumulating in the A-D region under the force of 40 grams (g), leading to alveolar bone resorption and tooth movement. When the force reached 80 g, TRAP-positive osteoclasts started appearing on the root surface in the A-D region. Additionally, micro-computed tomography revealed a significant root resorption at 80 g. Notably, the A-D region was identified as a major contributor to whole root resorption. It was determined that 40 g is the minimum effective force for tooth movement with minimal side effects according to the analysis of tooth movement, inclination, and hyalinization. These findings suggest that the A-D region with its changes on the root surface is an important consideration and sensitive indicator when evaluating orthodontic forces for a rat model. Collectively, our investigations into this region would aid in offering valuable implications for preventing and minimizing root resorption during patients’ orthodontic treatment.

Cite this article

Download citation ▾
Wenhao Zheng, Xiaofeng Lu, Guangjin Chen, Yufeng Shen, Xiaofei Huang, Jinfeng Peng, Jiajia Wang, Ying Yin, Wencheng Song, Mengru Xie, Shaoling Yu, …Lili Chen. The osteoclastic activity in apical distal region of molar mesial roots affects orthodontic tooth movement and root resorption in rats. International Journal of Oral Science, 2024, 16(0): 19 https://doi.org/10.1038/s41368-024-00284-1

References

1. McKiernan, E. X., McKiernan, F. & Jones, M. L. Psychological profiles and motives of adults seeking orthodontic treatment.Int. J. Adult Orthodon. Orthognath. Surg. 7, 187-198 (1992).
2. Proffit, W. R., Fields, H. W.& Moray, L. J. Prevalence of malocclusion and orthodontic treatment need in the United States: estimates from the NHANES III survey.Int J. Adult Orthodon. Orthognath. Surg. 13, 97-106 (1998).
3. Reitan K.Effects of force magnitude and direction of tooth movement on different alveolar bone types.Angle Orthod. 34, 244-255 (1964).
4. Meikle M. C.The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt.Eur. J. Orthod. 28, 221-240 (2006).
5. Kraiwattanapong K.& Samruajbenjakun, B. Tissue response resulting from different force magnitudes combined with corticotomy in rats.Angle Orthod. 89, 797-803 (2019).
6. Akl H. E.,El-Beialy, A. R., El-Ghafour, M. A., Abouelezz, A. M. & El Sharaby, F. A. Root resorption associated with maxillary buccal segment intrusion using variable force magnitudes.Angle Orthod. 91, 733-742 (2021).
7. Gonzales, C.et al.Force magnitude and duration effects on amount of tooth movement and root resorption in the rat molar.Angle Orthod. 78, 502-509 (2008).
8. Theodorou C. I.,Kuijpers-Jagtman, A. M., Bronkhorst, E. M. & Wagener, F. A. D. T. Optimal force magnitude for bodily orthodontic tooth movement with fixed appliances: A systematic review.Am. J. Orthod. Dentofac. Orthop. 156, 582-592 (2019).
9. Cesur, M. G.et al.Comparison of BALP, CTX-I, and IL-4 levels around miniscrew implants during orthodontic tooth movement between two different amounts of force.Angle Orthod. 89, 630-636 (2019).
10. Yee J. A., Türk T., Elekdağ-Türk S., Cheng, L. L. & Darendeliler, M. A. Rate of tooth movement under heavy and light continuous orthodontic forces. Am. J. Orthod. Dentofac. Orthop. 136, 150.e151-150.e159 (2009).
11. Kraiwattanapong K.& Samruajbenjakun, B. Effects of different force magnitudes on corticotomy-assisted orthodontic tooth movement in rats.Angle Orthod. 88, 632-637 (2018).
12. Krishnan, V. & Davidovitch, Z. E. Cellular, molecular,tissue-level reactions to orthodontic force. Am. J. Orthod. Dentofac. Orthop. 129, 469.e461-469.432 (2006).
13. Henneman S.,Von den Hoff, J. W. & Maltha, J. C. Mechanobiology of tooth movement.Eur. J. Orthod. 30, 299-306 (2008).
14. Li, Z.et al.Stress distribution and collagen remodeling of periodontal ligament during orthodontic tooth movement.Front. Pharmacol. 10, 1263(2019).
15. Alikhani, M.et al.Saturation of the biological response to orthodontic forces and its effect on the rate of tooth movement.Orthod. Craniofac. Res. 18, 8-17 (2015).
16. King G. J., Keeling S. D., McCoy, E. A. & Ward, T. H. Measuring dental drift and orthodontic tooth movement in response to various initial forces in adult rats.Am. J. Orthod. Dentofac. Orthop. 99, 456-465 (1991).
17. Wu J. L., Liu Y. F., Peng W., Dong H. Y.& Zhang, J. X. A biomechanical case study on the optimal orthodontic force on the maxillary canine tooth based on finite element analysis.J. Zhejiang Univ. Sci. B 19, 535-546 (2018).
18. Li, M.et al.Investigation of optimal orthodontic force at the cellular level through three-dimensionally cultured periodontal ligament cells.Eur. J. Orthod. 38, 366-372 (2016).
19. Zhang H., Cui J. W., Lu X. L.& Wang, M. Q. Finite element analysis on tooth and periodontal stress under simulated occlusal loads.J. Oral Rehabil. 44, 526-536 (2017).
20. Pan, S.et al.Identification of ferroptosis, necroptosis, and pyroptosis-associated genes in periodontitis-affected human periodontal tissue using integrated bioinformatic analysis.Front. Pharmacol. 13, 1098851(2022).
21. Pani, P.et al.IL-1B(3954) polymorphism and red complex bacteria increase IL-1β (GCF) levels in periodontitis.J. Periodontal Res. 56, 501-511 (2021).
22. Brodzikowska, A., Górski, B.& Bogusławska-Kapała, A. Association between IL-1 Gene Polymorphisms and Stage III Grade B Periodontitis in Polish Population.Int. J. Environ. Res. Public Health 19, 14687(2022).
23. von Böhl, M. & Kuijpers-Jagtman, A. M. Hyalinization during orthodontic tooth movement: a systematic review on tissue reactions. Eur. J. Orthod. 31, 30-36, https://doi.org/10.1093/ejo/cjn080 (2009).
24. Goldsmith C. S.& Bell-Pedersen, D. Diverse roles for MAPK signaling in circadian clocks.Adv. Genet. 84, 1-39 (2013).
25. Xie, Y.et al.Orthodontic force-induced BMAL1 in PDLCs is a vital osteoclastic activator.J. Dent. Res. 101, 177-186 (2022).
26. Ren, Y., Maltha, J. C.& Kuijpers-Jagtman, A. M. Optimum force magnitude for orthodontic tooth movement: a systematic literature review.Angle Orthod. 73, 86-92 (2003).
27. Kalajzic, Z.et al.Effect of cyclical forces on the periodontal ligament and alveolar bone remodeling during orthodontic tooth movement.Angle Orthod. 84, 297-303 (2014).
28. Cattaneo, P. M., Dalstra, M.& Melsen, B. Moment-to-force ratio, center of rotation, and force level: A finite element study predicting their interdependency for simulated orthodontic loading regimens.Am. J. Orthod. Dentofac. Orthop. 133, 681-689 (2008).
29. Yoshida N.,Jost-Brinkmann, P.-G., Koga, Y., Mimaki, N. & Kobayashi, K. Experimental evaluation of initial tooth displacement, center of resistance, and center of rotation under the influence of an orthodontic force.Am. J. Orthod. Dentofac. Orthop. 120, 190-197 (2001).
30. Schneider, J., Geiger, M.& Sander, F.-G. Numerical experiments on long-time orthodontic tooth movement.Am. J. Orthod. Dentofac. Orthop. 121, 257-265 (2002).
31. Meyer, B. N., Chen, J.& Katona, T. R. Does the center of resistance depend on the direction of tooth movement?Am. J. Orthod. Dentofac. Orthop. 137, 354-361 (2010).
32. Verna, C., Cattaneo, P. M.& Dalstra, M. Corticotomy affects both the modus and magnitude of orthodontic tooth movement.Eur. J. Orthod. 40, 107-112 (2018).
33. Abdul Wahab, R. M. et al. Enzyme activity profiles and ELISA analysis of biomarkers from human saliva and gingival crevicular fluid during orthodontic tooth movement using self-ligating brackets.Oral. Health Dent. Manag 13, 194-199 (2014).
34. Keng F.-Y., Quick A. N., Swain M. V.& Herbison, P. A comparison of space closure rates between preactivated nickel-titanium and titanium-molybdenum alloy T-loops: a randomized controlled clinical trial.Eur. J. Orthod. 34, 33-38 (2012).
35. Falkensammer, F.et al.Impact of extracorporeal shock-wave therapy on the stability of temporary anchorage devices in adults: a single-center, randomized, placebo-controlled clinical trial.Am. J. Orthod. Dentofac. Orthop. 146, 413-422 (2014).
36. Liu, X.et al.Effects of upper-molar distalization using clear aligners in combination with Class II elastics: a three-dimensional finite element analysis.BMC Oral Health 22, 546(2022).
37. Kohno T., Matsumoto Y., Kanno Z., Warita H.& Soma, K. Experimental tooth movement under light orthodontic forces: rates of tooth movement and changes of the periodontium.J. Orthod. 29, 129-135 (2002).
38. Viecilli R. F.,Kar-Kuri, M. H., Varriale, J., Budiman, A. & Janal, M. Effects of initial stresses and time on orthodontic external root resorption.J. Dent. Res. 92, 346-351 (2013).
39. Hazan-Molina, H., Gabet, Y., Aizenbud, I., Aizenbud, N. & Aizenbud, D. Orthodontic force and extracorporeal shock wave therapy: assessment of orthodontic tooth movement and bone morphometry in a rat model.Arch. Oral Biol. 134, 105327(2022).
40. Murphy, C. A.et al.Effect of corticision and different force magnitudes on orthodontic tooth movement in a rat model.Am. J. Orthod. Dentofac. Orthop. 146, 55-66 (2014).
41. Ueda, M.et al.Involvement of interleukins-17 and -34 in exacerbated orthodontic root resorption by jiggling force during rat experimental tooth movement.J. World Fed. Orthod. 9, 47-55 (2020).
42. Hazan-Molina, H., Aizenbud, I., Kaufman, H., Teich, S. & Aizenbud, D. The influence of shockwave therapy on orthodontic tooth movement induced in the rat.Adv. Exp. Med. Biol. 878, 57-65 (2016).
43. Tsuchiya, S. et al. Physiological distal drift in rat molars contributes to acellular cementum formation. Anat. Rec. (Hoboken) 296, 1255-1263 (2013).
44. Turkkahraman, H.et al.Root resorption and ensuing cementum repair by Wnt/β-catenin dependent mechanism.Am. J. Orthod. Dentofac. Orthop. 158, 16-27 (2020).
45. Gudhimella, S.et al.A rodent model using skeletal anchorage and low forces for orthodontic tooth movement.Am. J. Orthod. Dentofac. Orthop. 155, 254-263 (2019).
46. Tomizuka, R.et al.Histological evaluation of the effects of initially light and gradually increasing force on orthodontic tooth movement.Angle Orthod. 77, 410-416 (2007).
47. Nakamura, K., Sahara, N.& Deguchi, T. Temporal changes in the distribution and number of macrophage-lineage cells in the periodontal membrane of the rat molar in response to experimental tooth movement.Arch. Oral Biol. 46, 593-607 (2001).
48. Tengku B. S., Joseph B. K., Harbrow D., Taverne A. A.& Symons, A. L. Effect of a static magnetic field on orthodontic tooth movement in the rat.Eur. J. Orthod. 22, 475-487 (2000).
49. Kumasako-Haga,T., Konoo, T., Yamaguchi, K. & Hayashi, H. Effect of 8-hour intermittent orthodontic force on osteoclasts and root resorption. Am. J. Orthod. Dentofac. Orthop. 135, 278.e271-278 (2009).
50. Fox N.Longer orthodontic treatment may result in greater external apical root resorption.Evid.-based Dent. 6, 21(2005).
51. Amuk M.,Gul Amuk, N. & Ozturk, T. Effects of root-cortex relationship, root shape, and impaction side on treatment duration and root resorption of impacted canines.Eur. J. Orthod. 43, 508-515 (2021).
52. Gonzales, C.et al.An in vivo 3D micro-CT evaluation of tooth movement after the application of different force magnitudes in rat molar.Angle Orthod. 79, 703-714 (2009).
53. Watanabe, K.et al.Regional variations of jaw bone characteristics in an ovariectomized rat model.J. Mech. Behav. Biomed. Mater. 110, 103952(2020).
54. Brudvik P.& Rygh, P. Root resorption beneath the main hyalinized zone.Eur. J. Orthod. 16, 249-263 (1994).
PDF

Accesses

Citations

Detail

Sections
Recommended

/