1. Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China; 2. Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; 3. Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
Show less
History+
Received
Revised
Published
27 Oct 2023
06 Jan 2024
01 Jan 2024
Issue Date
10 Jul 2024
Abstract
Despite decades of research, cancer continues to be a major global health concern. The human mouth appears to be a multiplicity of local environments communicating with other organs and causing diseases via microbes. Nowadays, the role of oral microbes in the development and progression of cancer has received increasing scrutiny. At the same time, bioengineering technology and nanotechnology is growing rapidly, in which the physiological activities of natural bacteria are modified to improve the therapeutic efficiency of cancers. These engineered bacteria were transformed to achieve directed genetic reprogramming, selective functional reorganization and precise control. In contrast to endotoxins produced by typical genetically modified bacteria, oral flora exhibits favorable biosafety characteristics. To outline the current cognitions upon oral microbes, engineered microbes and human cancers, related literatures were searched and reviewed based on the PubMed database. We focused on a number of oral microbes and related mechanisms associated with the tumor microenvironment, which involve in cancer occurrence and development. Whether engineering oral bacteria can be a possible application of cancer therapy is worth consideration. A deeper understanding of the relationship between engineered oral bacteria and cancer therapy may enhance our knowledge of tumor pathogenesis thus providing new insights and strategies for cancer prevention and treatment.
Zifei Wang, Wansu Sun, Ruixue Hua, Yuanyin Wang, Yang Li, …Hengguo Zhang.
Promising dawn in tumor microenvironment therapy: engineering oral bacteria. International Journal of Oral Science, 2024, 16(0): 24 https://doi.org/10.1038/s41368-024-00282-3
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Sung, H.et al.Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.Cancer J. Clin. 71, 209-249 (2021). 2. Tomasetti, C. & Vogelstein, B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78-81 (2015). Cancer etiology. 3. Whiteman D. C.& Wilson, L. F. The fractions of cancer attributable to modifiable factors: A global review.Cancer Epidemiol. 44, 203-221 (2016). 4. Lewandowska A. M., Rudzki M., Rudzki S., Lewandowski T.& Laskowska, B. Environmental risk factors for cancer - review paper.Ann. Agric. Environ. Med.: AAEM 26, 1-7 (2019). 5. Liang, K., Liu, Q.& Kong, Q. New technologies in developing recombinant-attenuated bacteria for cancer therapy.Biotechnol. Bioeng. 118, 513-530 (2021). 6. Demicheli R., Retsky M. W., Hrushesky W. J., Baum M.& Gukas, I. D. The effects of surgery on tumor growth: a century of investigations.Ann. Oncol. : Off. J. Eur. Soc. Med. Oncol. 19, 1821-1828 (2008). 7. Liu, J.et al.Intravesical chemotherapy synergize with an immune adjuvant by a thermo-sensitive hydrogel system for bladder cancer.Bioact. Mater. 31, 315-332 (2024). 8. Diakos C. I., Charles K. A., McMillan, D. C. & Clarke, S. J. Cancer-related inflammation and treatment effectiveness.Lancet Oncol. 15, e493-e503 (2014). 9. Pointer, K. B., Pitroda, S. P.& Weichselbaum, R. R. Radiotherapy and immunotherapy: open questions and future strategies.Trends cancer 8, 9-20 (2022). 10. Hu W., Wang G., Huang D., Sui M.& Xu, Y. Cancer immunotherapy based on natural killer cells: current progress and new opportunities.Front. Immunol. 10, 1205(2019). 11. Sun, X.et al.Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy.Nat. Nanotechnol. 16, 1260-1270 (2021). 12. Forbes N. S.Engineering the perfect (bacterial) cancer therapy.Nat. Rev. Cancer 10, 785-794 (2010). 13. Duong M. T., Qin Y., You S. H.& Min, J. J. Bacteria-cancer interactions: bacteria-based cancer therapy.Exp. Mol. Med. 51, 1-15 (2019). 14. Siegall C. B.,FitzGerald, D. J. & Pastan, I. Selective killing of tumor cells using EGF or TGF alpha-Pseudomonas exotoxin chimeric molecules.Semin. Cancer Biol. 1, 345-350 (1990). 15. Jiang, S. N.et al.Inhibition of tumor growth and metastasis by a combination of Escherichia coli-mediated cytolytic therapy and radiotherapy.Mol. Ther. J. Am. Soc. Gene Ther. 18, 635-642 (2010). 16. St Jean, A. T., Swofford, C. A., Panteli, J. T., Brentzel, Z. J. & Forbes, N. S. Bacterial delivery of Staphylococcus aureus α-hemolysin causes regression and necrosis in murine tumors.Mol. Ther. J. Am. Soc. Gene Ther. 22, 1266-1274 (2014). 17. Lehouritis, P., Springer, C.& Tangney, M. Bacterial-directed enzyme prodrug therapy.J. Control. Rel. 170, 120-131 (2013). 18. Li, Z.et al.Chemically and biologically engineered bacteria-based delivery systems for emerging diagnosis and advanced therapy.Adv. Mater. 33, e2102580(2021). 19. Deo P. N.& Deshmukh, R. Oral microbiome: Unveiling the fundamentals.J. Oral. Maxillofac. Pathol. 23, 122-128 (2019). 20. Kilian, M.et al.The oral microbiome - an update for oral healthcare professionals.Br. Dent. J. 221, 657-666 (2016). 21. Kilian M.The oral microbiome - friend or foe?Eur. J. Oral. Sci. 126, 5-12 (2018). 22. Zheng, D. W.et al.Biomaterial-mediated modulation of oral microbiota synergizes with PD-1 blockade in mice with oral squamous cell carcinoma.Nat. Biomed. Eng. 6, 32-43 (2022). 23. Karpiński, T. M. Role of oral microbiota in cancer development. Microorganisms 7, https://doi.org/10.3390/microorganisms7010020 (2019). 24. Laugisch, O.et al.Periodontal pathogens and associated intrathecal antibodies in early stages of Alzheimer’s disease.J. Alzheimer’s Dis. : JAD 66, 105-114 (2018). 25. Mesa, F.et al.Periodontitis and mechanisms of cardiometabolic risk: Novel insights and future perspectives.Biochim. Biophys. Mol. Basis Dis. 1865, 476-484 (2019). 26. Whitmore S. E.& Lamont, R. J. Oral bacteria and cancer.PLoS Pathog. 10, e1003933(2014). 27. Drewes, J. L.et al.High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia.NPJ Biofilms Microbiomes 3, 34(2017). 28. Yamamura, K.et al.Human Microbiome Fusobacterium Nucleatum iN Esophageal Cancer Tissue Is Associated With Prognosis.Clin. Cancer Res. : Off. J. Am. Assoc. Cancer Res. 22, 5574-5581 (2016). 29. Katz J., Onate M. D., Pauley K. M., Bhattacharyya I.& Cha, S. Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma.Int. J. Oral. Sci. 3, 209-215 (2011). 30. Structure, function and diversity of the healthy human microbiome.Nature 486, 207-214, (2012). 31. Gurbatri, C. R., Arpaia, N.& Danino, T. Engineering bacteria as interactive cancer therapies.Science 378, 858-864 (2022). 32. Fan J. X., Niu M. T., Qin Y. T., Sun Y. X.& Zhang, X. Z. Progress of engineered bacteria for tumor therapy.Adv. Drug Deliv. Rev. 185, 114296(2022). 33. Wade W. G.The oral microbiome in health and disease.Pharmacol. Res. 69, 137-143 (2013). 34. Kolenbrander P. E.Oral microbial communities: biofilms, interactions, and genetic systems.Annu. Rev. Microbiol. 54, 413-437 (2000). 35. Chatzigiannidou I., Teughels W., Van de Wiele, T. & Boon, N. Oral biofilms exposure to chlorhexidine results in altered microbial composition and metabolic profile.NPJ Biofilms Microbiomes 6, 13(2020). 36. Simón-Soro, A. et al. Microbial geography of the oral cavity.J. Dent. Res. 92, 616-621 (2013). 37. Zijnge, V.et al.Oral biofilm architecture on natural teeth.PloS One 5, e9321(2010). 38. Minamino T.& Imada, K. The bacterial flagellar motor and its structural diversity.Trends Microbiol. 23, 267-274 (2015). 39. Sowa, Y.et al.Direct observation of steps in rotation of the bacterial flagellar motor.Nature 437, 916-919 (2005). 40. Kinosita Y., Uchida N., Nakane D.& Nishizaka, T. Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum.Nat. Microbiol. 1, 16148(2016). 41. Kearns D. B.A field guide to bacterial swarming motility.Nat. Rev. Microbiol. 8, 634-644 (2010). 42. Zhang, Y.et al.E. coli Nissle 1917-Derived Minicells For Targeted Delivery Of Chemotherapeutic Drug To Hypoxic Regions For Cancer Therapy.Theranostics 8, 1690-1705 (2018). 43. Chien, T.et al.Enhancing the tropism of bacteria via genetically programmed biosensors.Nat. Biomed. Eng. 6, 94-104 (2022). 44. Flentie, K.et al.A bioluminescent transposon reporter-trap identifies tumor-specific microenvironment-induced promoters in Salmonella for conditional bacterial-based tumor therapy.Cancer Discov. 2, 624-637 (2012). 45. Sharma, A.et al.Hypoxia-targeted drug delivery.Chem. Soc. Rev. 48, 771-813 (2019). 46. Zou W.Immunosuppressive networks in the tumour environment and their therapeutic relevance.Nat. Rev. Cancer 5, 263-274 (2005). 47. Huang, N.et al.Gold nanoparticles induce tumor vessel normalization and impair metastasis by inhibiting Endothelial Smad2/3 signaling.ACS Nano 14, 7940-7958 (2020). 48. Yang, S.et al.Tumor temporal proteome profiling reveals the immunological triple offensive induced by synthetic anti-cancer Salmonella.Front. Immunol. 12, 712936(2021). 49. Forbes, N. S.et al.White paper on microbial anti-cancer therapy and prevention.J. Immunother. Cancer 6, 78(2018). 50. Kasinskas R. W.& Forbes, N. S. Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis.Cancer Res. 67, 3201-3209 (2007). 51. Ho, C. L.et al.Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention.Nat. Biomed. Eng. 2, 27-37 (2018). 52. He, L.et al.Intestinal probiotics E. coli Nissle 1917 as a targeted vehicle for delivery of p53 and Tum-5 to solid tumors for cancer therapy.J. Biol. Eng. 13, 58(2019). 53. Jiang, S. N.et al.Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent.Mol. Ther. J. Am. Soc. Gene Ther. 21, 1985-1995 (2013). 54. Zheng, J. H.et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci. Transl. Med. 9, https://doi.org/10.1126/scitranslmed.aak9537 (2017). 55. Ramesh G.,MacLean, A. G. & Philipp, M. T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain.Mediat. Inflamm. 2013, 480739(2013). 56. Sorenson B. S., Banton K. L., Frykman N. L., Leonard A. S.& Saltzman, D. A. Attenuated Salmonella typhimurium with IL-2 gene reduces pulmonary metastases in murine osteosarcoma.Clin. Orthop. Relat. Res. 466, 1285-1291 (2008). 57. Zhang, H. Y.et al.Tumor-targeted delivery of biologically active TRAIL protein.Cancer Gene Ther. 17, 334-343 (2010). 58. Hosseini-Giv, N., Bahrami, A. R. & Matin, M. M. Application of bacterial directed enzyme prodrug therapy as a targeted chemotherapy approach in a mouse model of breast cancer.Int. J. Pharm. 606, 120931(2021). 59. Sharrock, A. V.et al.Engineering the Escherichia coli Nitroreductase NfsA to create a flexible enzyme-prodrug activation system.Front. Pharmacol. 12, 701456(2021). 60. Chen, W.et al.Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy.ACS nano 12, 5995-6005 (2018). 61. Yang, Z.et al.Engineering bioluminescent bacteria to boost photodynamic therapy and systemic anti-tumor immunity for synergistic cancer treatment.Biomaterials 281, 121332(2022). 62. Kim S. H., Castro F., Paterson Y.& Gravekamp, C. High efficacy of a Listeria-based vaccine against metastatic breast cancer reveals a dual mode of action.Cancer Res. 69, 5860-5866 (2009). 63. Liu, Y.et al.Intravenous delivery of living listeria monocytogenes elicits gasdmermin-dependent tumor pyroptosis and motivates anti-tumor immune response.ACS Nano 16, 4102-4115 (2022). 64. Liu, Y.et al.Bacterial-mediated tumor therapy: old treatment in a new context.Adv. Sci. 10, e2205641(2023). 65. Fan, J. X.et al.Bacteria-mediated tumor therapy utilizing photothermally-controlled TNF-α Expression via oral administration.Nano Lett. 18, 2373-2380 (2018). 66. Ptacin, J. L.et al.An engineered IL-2 reprogrammed for anti-tumor therapy using a semi-synthetic organism.Nat. Commun. 12, 4785(2021). 67. Tanoue, T.et al.A defined commensal consortium elicits CD8 T cells and anti-cancer immunity.Nature 565, 600-605 (2019). 68. Zhang, Y.et al.Synergistic cancer immunotherapy utilizing programmed Salmonella typhimurium secreting heterologous flagellin B conjugated to interleukin-15 proteins.Biomaterials 298, 122135(2023). 69. Gurbatri, C. R.et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci. Transl. Med. 12, https://doi.org/10.1126/scitranslmed.aax0876 (2020). 70. Chowdhury, S.et al.Programmable bacteria induce durable tumor regression and systemic antitumor immunity.Nat. Med. 25, 1057-1063 (2019). 71. Lin, Z.et al.In situ immunomodulation of tumors with biosynthetic bacteria promote anti-tumor immunity.Bioact. Mater. 32, 12-27 (2024). 72. Yoon, W.et al.Application of genetically engineered Salmonella typhimurium for interferon-gamma-induced therapy against melanoma.Eur. J. Cancer 70, 48-61 (2017). 73. Peek, M. C.et al. Systematic review of high-intensity focused ultrasound ablation in the treatment of breast cancer. Br. J. Surg. 102, 873-882 (2015). discussion 882. 74. Um, W.et al.Necroptosis-inducible polymeric nanobubbles for enhanced cancer sonoimmunotherapy.Adv. Mater. 32, e1907953(2020). 75. Devarakonda S. B., Myers M. R., Lanier M., Dumoulin C.& Banerjee, R. K. Assessment of gold nanoparticle-mediated-enhanced hyperthermia using MR-guided high-intensity focused ultrasound ablation procedure.Nano Lett. 17, 2532-2538 (2017). 76. Liang, X.et al.Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer.ACS Nano 9, 1280-1293 (2015). 77. Chen Y., Du M., Yuan Z., Chen Z.& Yan, F. Spatiotemporal control of engineered bacteria to express interferon-γ by focused ultrasound for tumor immunotherapy.Nat. Commun. 13, 4468(2022). 78. Abedi, M. H.et al.Ultrasound-controllable engineered bacteria for cancer immunotherapy.Nat. Commun. 13, 1585(2022). 79. Akolpoglu, M. B.et al.Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery.Sci. Adv. 8, eabo6163 (2022). 80. Felfoul, O.et al.Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions.Nat. Nanotechnol. 11, 941-947 (2016). 81. Ray, P. D., Huang, B. W.& Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.Cell. Signal. 24, 981-990 (2012). 82. Kumari S., Badana A. K., Murali G. M., Shailender G.& Malla, R. Reactive oxygen species: a key constituent in cancer survival.Biomark. insights 13, 1177271918755391(2018). 83. Cui, Q.et al.Modulating ROS to overcome multidrug resistance in cancer.Drug Resist. Updates: Rev. Comment. Antimicrob. Anticancer Chemother. 41, 1-25 (2018). 84. Yang, B.et al.Light-activatable dual-source ROS-responsive prodrug nanoplatform for synergistic chemo-photodynamic therapy.Biomater. Sci. 6, 2965-2975 (2018). 85. Guo, Y.et al.Photodynamic therapy-improved oncolytic bacterial immunotherapy with FAP-encoding S. typhimurium.J. Control. Rel. 351, 860-871 (2022). 86. Yaqoob M. D., Xu L., Li C., Leong M. M.L. & Xu, D. D. Targeting mitochondria for cancer photodynamic therapy.Photodiag. Photodyn. Ther. 38, 102830(2022). 87. Zaloga G. P.Parenteral nutrition in adult inpatients with functioning gastrointestinal tracts: assessment of outcomes.Lancet 367, 1101-1111 (2006). 88. Górska A., Przystupski D., Niemczura M. J.& Kulbacka, J. Probiotic bacteria: a promising tool in cancer prevention and therapy.Curr. Microbiol. 76, 939-949 (2019). 89. Yue, T.et al.Antitumor effect of invasive Lactobacillus plantarum delivering associated antigen gene sHSP between Trichinella spiralis and Lewis lung cancer cells.Int. Immunopharmacol. 115, 109708(2023). 90. Kitagawa, K.et al.An oral cancer vaccine using a Bifidobacterium vector suppresses tumor growth in a syngeneic mouse bladder cancer model.Mol. Ther. Oncolytics 22, 592-603 (2021). 91. Zhou, H.,et al. Intravenous Administration Is an Effective. Intravenous Administration Is an Effective and Safe Route for Cancer Gene Therapy Using the Bifidobacterium-Mediated Recombinant HSV-1 Thymidine Kinase and Ganciclovir. International journal of molecular sciences 17, https://doi.org/10.3390/ijms17060891 (2016). 92. Xiong, S.et al.Attenuated Salmonella typhimurium-mediated tumour targeting imaging based on peptides.Biomater. Sci. 8, 3712-3719 (2020). 93. Melero I., Castanon E., Alvarez M., Champiat S.& Marabelle, A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies.Nat. Rev. Clin. Oncol. 18, 558-576 (2021). 94. McCarthy, E. F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas.IOWA Orthop. J. 26, 154-158 (2006). 95. Starnes C. O.Coley’s toxins in perspective.Nature 357, 11-12 (1992). 96. Pan H., Zheng M., Ma A., Liu L.& Cai, L. Cell/Bacteria-based bioactive materials for cancer immune modulation and precision therapy.Adv. Mater. 33, e2100241(2021). 97. Dróżdż M., Makuch S., Cieniuch G., Woźniak M.& Ziółkowski, P. Obligate and facultative anaerobic bacteria in targeted cancer therapy: Current strategies and clinical applications.Life Sci. 261, 118296(2020). 98. Li, Y.et al.Rapid surface display of mRNA antigens by bacteria-derived outer membrane vesicles for a personalized tumor vaccine.Adv. Mater. 34, e2109984(2022). 99. Darvin P., Toor S. M., Sasidharan Nair, V. & Elkord, E. Immune checkpoint inhibitors: recent progress and potential biomarkers.Exp. Mol. Med. 50, 1-11 (2018). 100. Gibney, G. T., Weiner, L. M.& Atkins, M. B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy.Lancet Oncol. 17, e542-e551 (2016). 101. Wang, S. J., Dougan, S. K.& Dougan, M. Immune mechanisms of toxicity from checkpoint inhibitors.Trends cancer 9, 543-553 (2023). 102. Sivan, A.et al.Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy.Science 350, 1084-1089 (2015). 103. Mager, L. F.et al.Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy.Science 369, 1481-1489 (2020). 104. Naciute M., Kiwitt T., Kemp R. A.& Hook, S. Bacteria biohybrid oral vaccines for colorectal cancer treatment reduce tumor growth and increase immune infiltration.Vaccine 39, 5589-5599 (2021). 105. Murakami, T.et al.Tumor-targeting Salmonella typhimurium A1-R promotes Tumoricidal CD8(+) T cell tumor infiltration and arrests growth and metastasis in a syngeneic pancreatic-cancer orthotopic mouse model.J. Cell. Biochem. 119, 634-639 (2018). 106. Thornlow D. N., Brackett E. L., Gigas J. M., Van Dessel, N. & Forbes, N. S. Persistent enhancement of bacterial motility increases tumor penetration.Biotechnol. Bioeng. 112, 2397-2405 (2015). 107. Guallar-Garrido, S. & Julián, E. Bacillus Calmette-Guérin (BCG) therapy for bladder cancer: an update.ImmunoTargets Ther. 9, 1-11 (2020). 108. Lin, S.et al. Mucosal immunity-mediated modulation of the gut microbiome by oral delivery of probiotics into Peyer’s patches. Science advances 7, https://doi.org/10.1126/sciadv.abf0677 (2021). 109. Nguyen P. Q., Courchesne N. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials.Adv. Mater. 30, e1704847(2018). 110. Mi, Z.et al.“Trojan Horse” Salmonella Enabling Tumor homing of silver nanoparticles via neutrophil infiltration for synergistic tumor therapy and enhanced biosafety.Nano Lett. 21, 414-423 (2021). 111. Pangilinan, C. R. & Lee, C. H. Salmonella-based targeted cancer therapy: updates on a promising and innovative tumor immunotherapeutic strategy. Biomedicines 7, https://doi.org/10.3390/biomedicines7020036 (2019). 112. Liu, X.et al.Metabolically engineered bacteria as light-controlled living therapeutics for anti-angiogenesis tumor therapy.Mater. Horiz. 8, 1454-1460 (2021). 113. Liu J.& Sun, X. Advances in bacteria-based therapy for drug delivery.Adv. drug Deliv. Rev. 190, 114565(2022). 114. Wu F.& Liu, J. Decorated bacteria and the application in drug delivery.Adv. drug Deliv. Rev. 188, 114443(2022). 115. Yoo J. W., Irvine D. J., Discher D. E.& Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers.Nat. Rev. Drug Discov. 10, 521-535 (2011). 116. Song W. F., Zheng D., Zeng S. M., Zeng X.& Zhang, X. Z. Targeting to tumor-harbored bacteria for precision tumor therapy.ACS Nano 16, 17402-17413 (2022). 117. Zhan, Y.et al.Improved tumor infiltration and immunomodulation for tumor therapy: a pathway based on tetrahedral framework nucleic acids coupled bacterial nanocells.Nano Lett. 23, 353-362 (2023). 118. Cao Z.& Liu, J. Bacteria and bacterial derivatives as drug carriers for cancer therapy.J. Control. Rel. 326, 396-407 (2020). 119. Xie, S.et al.Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to achieve tumor targeting and responsive drug release.J. Control. Rel. 268, 390-399 (2017). 120. Park B. W., Zhuang J., Yasa O.& Sitti, M. Multifunctional bacteria-driven microswimmers for targeted active drug delivery.ACS Nano 11, 8910-8923 (2017). 121. Alapan, Y.et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot. 3, https://doi.org/10.1126/scirobotics.aar4423 (2018). 122. Barbé, S.et al.Secretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as a tool for anti-tumor treatment.FEMS Microbiol. Lett. 246, 67-73 (2005). 123. Chen W., Zhu Y., Zhang Z.& Sun, X. Advances in Salmonella Typhimurium-based drug delivery system for cancer therapy.Adv. Drug Deliv. Rev. 185, 114295(2022). 124. Beutler B.& Rietschel, E. T. Innate immune sensing and its roots: the story of endotoxin.Nat. Rev. Immunol. 3, 169-176 (2003). 125. Low, K. B.et al.Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo.Nat. Biotechnol. 17, 37-41 (1999). 126. Ryan, R. M.et al.Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors.Gene Ther. 16, 329-339 (2009). 127. Nguyen, V. H.et al.Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer.Cancer Res. 70, 18-23 (2010). 128. Yu, B.et al.Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella Typhimurium strain.Sci. Rep. 2, 436(2012). 129. Chen, P.et al.siRNA targeting PD-L1 delivered with attenuated Salmonella enhanced the anti-tumor effect of lenvatinib on mice bearing Hepatocellular carcinoma.Int. Immunopharmacol. 111, 109127(2022). 130. Tian, Y.et al.Targeted therapy via oral administration of attenuated Salmonella expression plasmid-vectored Stat3-shRNA cures orthotopically transplanted mouse HCC.Cancer gene Ther. 19, 393-401 (2012). 131. Raman, V.et al.Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases.Nat. Commun. 12, 6116(2021). 132. Liang, K.et al.Optimized attenuated Salmonella Typhimurium suppressed tumor growth and improved survival in mice.Front. Microbiol. 12, 774490(2021). 133. Aggarwal, N., Breedon, A. M.E., Davis, C. M., Hwang, I. Y. & Chang, M. W. Engineering probiotics for therapeutic applications: recent examples and translational outlook.Curr. Opin. Biotechnol. 65, 171-179 (2020). 134. Leventhal, D. S.et al.Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity.Nat. Commun. 11, 2739(2020). 135. Hassan, R.et al.Clinical response of live-attenuated, Listeria monocytogenes Expressing Mesothelin (CRS-207) with chemotherapy in patients with malignant pleural mesothelioma.Clin. Cancer Res. 25, 5787-5798 (2019). 136. Toso, J. F.et al.Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma.J. Clin. Oncol. 20, 142-152 (2002). 137. Lamm D. L.& Morales, A. A BCG success story: From prevention of tuberculosis to optimal bladder cancer treatment.Vaccine 39, 7308-7318 (2021). 138. Wang J.& Maniruzzaman, M. A global bibliometric and visualized analysis of bacteria-mediated cancer therapy.Drug Discov. Today 27, 103297(2022). 139. Saltzman, D. A.et al.Attenuated Salmonella typhimurium containing interleukin-2 decreases MC-38 hepatic metastases: a novel anti-tumor agent.Cancer Biother. Radiopharm. 11, 145-153 (1996). 140. Zhou S., Gravekamp C., Bermudes D.& Liu, K. Tumour-targeting bacteria engineered to fight cancer.Nat. Rev. Cancer 18, 727-743 (2018). 141. Song, S., Vuai, M. S.& Zhong, M. The role of bacteria in cancer therapy - enemies in the past, but allies at present.Infect. Agents Cancer 13, 9(2018). 142. Lee, Y. C.et al. Association Between Helicobacter Pylori Eradication And Gastric Cancer Incidence: A Systematic Review And Meta-analysis. Gastroenterology 150, 1113-1124.e1115 (2016). 143. Clairmont, C.et al.Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium.J. Infect. Dis. 181, 1996-2002 (2000). 144. Hwang J., An E. K., Kim S. J., Zhang W.& Jin, J. O. Escherichia coli Mimetic gold nanorod-mediated photo- and immunotherapy for treating cancer and its metastasis.ACS Nano 16, 8472-8483 (2022). 145. Caselli, E.et al.Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture.BMC Microbiol. 20, 120(2020). 146. Freire, M., Nelson, K. E.& Edlund, A. The oral host-microbial interactome: An ecological chronometer of health?Trends Microbiol. 29, 551-561 (2021). 147. Lamont, R. J., Koo, H.& Hajishengallis, G. The oral microbiota: dynamic communities and host interactions.Nat. Rev. Microbiol. 16, 745-759 (2018). 148. Desai, S.et al.Fusobacterium nucleatum is associated with inflammation and poor survival in early-stage HPV-negative tongue cancer.NAR cancer 4, zcac006 (2022). 149. Costa, C. P. D.et al. The tissue-associated microbiota in colorectal cancer: a systematic review. Cancers 14, https://doi.org/10.3390/cancers14143385 (2022). 150. Mäkinen, A. I.et al.Salivary microbiome profiles of oral cancer patients analyzed before and after treatment.Microbiome 11, 171(2023). 151. Guo, S.et al.A simple and novel fecal biomarker for colorectal cancer: ratio of Fusobacterium Nucleatum to probiotics populations, based on their antagonistic effect.Clin. Chem. 64, 1327-1337 (2018). 152. Chen, W. D.et al.Fusobacterium nucleatum is a risk factor for metastatic colorectal cancer.Curr. Med. Sci. 42, 538-547 (2022). 153. Zhang, X.et al.Salivary Fusobacterium nucleatum serves as a potential biomarker for colorectal cancer.iScience 25, 104203(2022). 154. Nejman, D.et al.The human tumor microbiome is composed of tumor type-specific intracellular bacteria.Science 368, 973-980 (2020). 155. Banerjee, S.et al.Prognostic correlations with the microbiome of breast cancer subtypes.Cell Death Dis. 12, 831(2021). 156. Tzeng, A.et al.Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer.Genome Med. 13, 60(2021). 157. Parhi, L.et al.Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression.Nat. Commun. 11, 3259(2020). 158. Chen, G.et al.Fusobacterium nucleatum outer membrane vesicles activate autophagy to promote oral cancer metastasis. J. Adv. Res. https://doi.org/10.1016/j.jare.2023.04.002(2023). 159. Casasanta, M. A.et al. Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration. Sci. Signal. 13, https://doi.org/10.1126/scisignal.aba9157 (2020). 160. Chen, S.et al.Fusobacterium nucleatum promotes colorectal cancer metastasis by modulating KRT7-AS/KRT7.Gut Microbes 11, 511-525 (2020). 161. Zare, A.et al. RIPK2: New elements in modulating inflammatory breast cancer pathogenesis. Cancers 10, https://doi.org/10.3390/cancers10060184 (2018). 162. Chen, Y.et al.Fusobacterium nucleatum promotes metastasis in colorectal cancer by activating autophagy signaling via the upregulation of CARD3 Expression.Theranostics 10, 323-339 (2020). 163. Yang, Y.et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB,up-regulating expression of MicroRNA-21. Gastroenterology 152, 851-866.e824 (2017). 164. Kong, X.et al.Fusobacterium nucleatum-triggered neutrophil extracellular traps facilitate colorectal carcinoma progression.J. Exp. Clin. Cancer Res. : CR 42, 236(2023). 165. Fatma, H., Maurya, S. K.& Siddique, H. R. Epigenetic modifications of c-MYC: Role in cancer cell reprogramming, progression and chemoresistance.Semin. cancer Biol. 83, 166-176 (2022). 166. Iida, N.et al.Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment.Science 342, 967-970 (2013). 167. Viaud, S.et al.The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide.Science 342, 971-976 (2013). 168. Little A., Tangney M., Tunney M. M.& Buckley, N. E. Fusobacterium nucleatum: a novel immune modulator in breast cancer.Expert Rev. Mol. Med. 25, e15(2023). 169. Despins, C. A.et al.Modulation of the host cell transcriptome and epigenome by Fusobacterium nucleatum.mBio 12, e0206221(2021). 170. Nawab, S.et al. The pathogenicity of fusobacterium nucleatum modulated by dietary fibers-a possible missing link between the dietary composition and the risk of colorectal cancer. Microorganisms 11, https://doi.org/10.3390/microorganisms11082004 (2023). 171. Yao Y., Shen X., Zhou M.& Tang, B. Periodontal pathogens promote oral squamous cell carcinoma by regulating ATR and NLRP3 inflammasome.Front. Oncol. 11, 722797(2021). 172. Udayasuryan, B.et al.Fusobacterium nucleatum induces proliferation and migration in pancreatic cancer cells through host autocrine and paracrine signaling.Sci. Signal. 15, eabn4948 (2022). 173. Yu, T.et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548-563.e516 (2017). 174. Jiang, S. S.et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe 31, 781-797.e789 (2023). 175. Ahmadzadeh, M.et al.Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired.Blood 114, 1537-1544 (2009). 176. Gao, Y.et al.Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer.Signal Transduct. Target. Ther. 6, 398(2021). 177. Li X., Zhang S., Guo G., Han J.& Yu, J. Gut microbiome in modulating immune checkpoint inhibitors.EBioMedicine 82, 104163(2022). 178. Kabwe, M.et al.Genomic, morphological and functional characterisation of novel bacteriophage FNU1 capable of disrupting Fusobacterium nucleatum biofilms.Sci. Rep. 9, 9107(2019). 179. Hajishengallis G., Abe T., Maekawa T., Hajishengallis E.& Lambris, J. D. Role of complement in host-microbe homeostasis of the periodontium.Semin. Immunol. 25, 65-72 (2013). 180. Ahn, J., Segers, S.& Hayes, R. B. Periodontal disease, Porphyromonas gingivalis serum antibody levels and orodigestive cancer mortality.Carcinogenesis 33, 1055-1058 (2012). 181. Irfan, M., Delgado, R. Z.R. & Frias-Lopez, J. The Oral Microbiome And Cancer.Front. Immunol. 11, 591088(2020). 182. Peters, B. A.et al.Oral microbiome composition reflects prospective risk for esophageal cancers.Cancer Res. 77, 6777-6787 (2017). 183. Gao, S.et al.Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer.Infect. Agents Cancer 11, 3(2016). 184. Chen, X.et al.Predictive value of the presence of Prevotella and the ratio of Porphyromonas gingivalis to Prevotella in saliva for esophageal squamous cell carcinoma.Front. Cell. Infect. Microbiol. 12, 997333(2022). 185. Guo Z. C., Jing S. L., Jumatai S.& Gong, Z. C. Porphyromonas gingivalis promotes the progression of oral squamous cell carcinoma by activating the neutrophil chemotaxis in the tumour microenvironment.Cancer Immunol., Immunother. 72, 1523-1539 (2023). 186. Kerdreux, M.et al.Porphy
AI Summary ×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.