Single-cell transcriptomics reveals cell atlas and identifies cycling tumor cells responsible for recurrence in ameloblastoma

Gan Xiong1,2,3, Nan Xie1,2,3, Min Nie4, Rongsong Ling5, Bokai Yun1,2,3, Jiaxiang Xie1,2,3, Linlin Ren1,2,3, Yaqi Huang1,2,3, Wenjin Wang1,2,3, Chen Yi1,2,3, Ming Zhang1,2,3, Xiuyun Xu1,2,3, Caihua Zhang6, Bin Zou7, Leitao Zhang8, Xiqiang Liu8, Hongzhang Huang1,2,3, Demeng Chen6, Wei Cao9,10

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 21. DOI: 10.1038/s41368-024-00281-4
ARTICLE

Single-cell transcriptomics reveals cell atlas and identifies cycling tumor cells responsible for recurrence in ameloblastoma

  • Gan Xiong1,2,3, Nan Xie1,2,3, Min Nie4, Rongsong Ling5, Bokai Yun1,2,3, Jiaxiang Xie1,2,3, Linlin Ren1,2,3, Yaqi Huang1,2,3, Wenjin Wang1,2,3, Chen Yi1,2,3, Ming Zhang1,2,3, Xiuyun Xu1,2,3, Caihua Zhang6, Bin Zou7, Leitao Zhang8, Xiqiang Liu8, Hongzhang Huang1,2,3, Demeng Chen6, Wei Cao9,10
Author information +
History +

Abstract

Ameloblastoma is a benign tumor characterized by locally invasive phenotypes, leading to facial bone destruction and a high recurrence rate. However, the mechanisms governing tumor initiation and recurrence are poorly understood. Here, we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution. Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response (IR), bone remodeling (BR), tooth development (TD), epithelial development (ED), and cell cycle (CC) signatures. Of note, we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence, which was dominated by the EZH2-mediated program. Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids. These data described the tumor subpopulation and clarified the identity, function, and regulatory mechanism of CC ameloblastoma cells, providing a potential therapeutic target for ameloblastoma.

Cite this article

Download citation ▾
Gan Xiong, Nan Xie, Min Nie, Rongsong Ling, Bokai Yun, Jiaxiang Xie, Linlin Ren, Yaqi Huang, Wenjin Wang, Chen Yi, Ming Zhang, Xiuyun Xu, Caihua Zhang, Bin Zou, Leitao Zhang, Xiqiang Liu, Hongzhang Huang, Demeng Chen, Wei Cao. Single-cell transcriptomics reveals cell atlas and identifies cycling tumor cells responsible for recurrence in ameloblastoma. International Journal of Oral Science, 2024, 16(0): 21 https://doi.org/10.1038/s41368-024-00281-4

References

1. Effiom O. A., Ogundana O. M., Akinshipo A. O.& Akintoye, S. O. Ameloblastoma: current etiopathological concepts and management.Oral. Dis. 24, 307-316 (2018).
2. Nagamalini, B. R.et al. Origin of ameloblastoma from Basal cells of the oral epithelium- establishing the relation using neuroectodermal markers. J. Clin. Diagn. Res. 8, ZC44-47 (2014).
3. Fuchigami T., Ono Y., Kishida S.& Nakamura, N. Molecular biological findings of ameloblastoma.Jpn. Dent. Sci. Rev. 57, 27-32 (2021).
4. Antonoglou G. N.& Sandor, G. K. Recurrence rates of intraosseous ameloblastomas of the jaws: a systematic review of conservative versus aggressive treatment approaches and meta-analysis of non-randomized studies.J. Craniomaxillofac. Surg. 43, 149-157 (2015).
5. Hendra, F. N.et al.Radical vs conservative treatment of intraosseous ameloblastoma: systematic review and meta-analysis.Oral. Dis. 25, 1683-1696 (2019).
6. Qiao, X.et al.Recurrence rates of intraosseous ameloblastoma cases with conservative or aggressive treatment: a systematic review and meta-analysis.Front. Oncol. 11, 647200(2021).
7. Brown, N. A.et al.Activating FGFR2-RAS-BRAF mutations in ameloblastoma.Clin. Cancer Res. 20, 5517-5526 (2014).
8. Sweeney, R. T.et al.Identification of recurrent SMO and BRAF mutations in ameloblastomas.Nat. Genet. 46, 722-725 (2014).
9. Tan S., Pollack J. R., Kaplan M. J., Colevas A. D.& West, R. B. BRAF inhibitor treatment of primary BRAF-mutant ameloblastoma with pathologic assessment of response.Oral. Surg. Oral. Med Oral. Pathol. Oral. Radio. 122, e5-7, (2016).
10. Tan S., Pollack J. R., Kaplan M. J., Colevas A. D.& West, R. B. BRAF inhibitor therapy of primary ameloblastoma.Oral. Surg. Oral. Med Oral. Pathol. Oral. Radio. 122, 518-519 (2016).
11. Puram, S. V.et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611-1624.e1624 (2017).
12. Xu, X.et al. Single-cell transcriptomic analysis uncovers the origin and intratumoral heterogeneity of parotid pleomorphic adenoma. Int. J. Oral Sci. 15, https://doi.org/10.1038/s41368-023-00243-2 (2023).
13. Zhang, M.et al.BET inhibition triggers antitumor immunity by enhancing MHC class I expression in head and neck squamous cell carcinoma.Mol. Ther. 30, 3394-3413 (2022).
14. Wang, C.et al.CD276 expression enables squamous cell carcinoma stem cells to evade immune surveillance.Cell Stem Cell 28, 1597-1613 e1597(2021).
15. Aran, D.et al.Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage.Nat. Immunol. 20, 163-172 (2019).
16. Toida, M.et al.Analysis of ameloblastomas by comparative genomic hybridization and fluorescence in situ hybridization.Cancer Genet. Cytogenet. 159, 99-104 (2005).
17. Jaaskelainen, K.et al.Cell proliferation and chromosomal changes in human ameloblastoma.Cancer Genet. Cytogenet. 136, 31-37 (2002).
18. Schiavo, G.et al.Deregulated HOX genes in ameloblastomas are located in physical contiguity to keratin genes.J. Cell Biochem. 112, 3206-3215 (2011).
19. Nodit, L.et al.Allelic loss of tumor suppressor genes in ameloblastic tumors.Mod. Pathol. 17, 1062-1067 (2004).
20. Jin, S.et al.Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma.Cell Res. 30, 950-965 (2020).
21. Ma, Q.et al.The SFRP1 inhibitor WAY-316606 attenuates osteoclastogenesis through dual modulation of canonical Wnt signaling. J. Bone. Miner. Res. https://doi.org/10.1002/jbmr.4435(2021).
22. Lin J., Lee D., Choi Y.& Lee, S. Y. The scaffold protein RACK1 mediates the RANKL-dependent activation of p38 MAPK in osteoclast precursors.Sci. Signal. 8, ra54 (2015).
23. Hyun, S. Y.et al.Amelogenic transcriptome profiling in ameloblast-like cells derived from adult gingival epithelial cells.Sci. Rep. 9, 3736(2019).
24. MacDougall, M., Mamaeva, O., Lu, C. & Chen, S. Establishment and characterization of immortalized mouse ameloblast-like cell lines.Orthod. Craniofac. Res. 22, 134-141 (2019).
25. Wan, Y.et al.A super-enhancer driven by FOSL1 controls miR-21-5p expression in head and neck squamous cell carcinoma.Front. Oncol. 11, 656628(2021).
26. Sharir, A.et al.A large pool of actively cycling progenitors orchestrates self-renewal and injury repair of an ectodermal appendage.Nat. Cell Biol. 21, 1102-1112 (2019).
27. Bhattacharya, B.et al.Gene expression in human embryonic stem cell lines: unique molecular signature.Blood 103, 2956-2964 (2004).
28. Wong, D. J.et al.Module map of stem cell genes guides creation of epithelial cancer stem cells.Cell Stem Cell 2, 333-344 (2008).
29. Kondo, S.et al.Discovery of novel molecular characteristics and cellular biological properties in ameloblastoma.Cancer Med. 9, 2904-2917 (2020).
30. Fortelny N.& Bock, C. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data.Genome Biol. 21, 190(2020).
31. Cusack, J. Report of the amputations of the lower jaw. Dubl Hosp. Rec. 4, 1-38 (1827).
32. Masthan K. M., Anitha N., Krupaa J.& Manikkam, S. Ameloblastoma.J. Pharm. Bioallied Sci. 7, S167-S170 (2015).
33. Juuri, E.et al.Sox2 marks epithelial competence to generate teeth in mammals and reptiles.Development 140, 1424-1432 (2013).
34. Martin, K. J.et al.Sox2+ progenitors in sharks link taste development with the evolution of regenerative teeth from denticles.Proc. Natl Acad. Sci. USA 113, 14769-14774 (2016).
35. Sanz-Navarro,M. et al. Plasticity within the niche ensures the maintenance of a Sox2(+) stem cell population in the mouse incisor. Development 145, https://doi.org/10.1242/dev.155929(2018).
36. Biehs, B.et al.BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor.Nat. Cell Biol. 15, 846-852 (2013).
37. Seidel, K.et al.Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor.Development 137, 3753-3761 (2010).
38. Batool, A., Jin, C. & Liu, Y. X. Role of EZH2 in cell lineage determination and relative signaling pathways. Front. Biosci. (Landmark Ed.) 24, 947-960 (2019).
39. Brand M., Nakka K., Zhu J.& Dilworth, F. J. Polycomb/trithorax antagonism: cellular memory in stem cell fate and function.Cell Stem Cell 24, 518-533 (2019).
40. Eich M. L., Athar M., Ferguson J. E.3rd & Varambally, S. EZH2-targeted therapies in cancer: hype or a reality.Cancer Res. 80, 5449-5458 (2020).
41. Laugesen, A., Hojfeldt, J. W.& Helin, K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation.Mol. Cell 74, 8-18 (2019).
42. Heikinheimo, K.et al.The mutational profile of unicystic ameloblastoma.J. Dent. Res. 98, 54-60 (2019).
43. Tao Q., Lv B., Qiao B., Zheng C. Q.& Chen, Z. F. Immortalization of ameloblastoma cells via reactivation of telomerase function: phenotypic and molecular characteristics.Oral. Oncol. 45, e239-244, (2009).
44. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors.Cell Syst. 8, 329-337 e324(2019).
45. Ji, A. L.et al.Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma.Cell 182, 497-514 e422(2020).
46. Patel, A. P.et al.Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.Science 344, 1396-1401 (2014).
47. Liberzon, A.et al.Molecular signatures database (MSigDB) 3.0.Bioinformatics 27, 1739-1740 (2011).
48. Teschendorff A. E.& Enver, T. Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome.Nat. Commun. 8, 15599(2017).
49. Aibar, S.et al.SCENIC: single-cell regulatory network inference and clustering.Nat. Methods 14, 1083-1086 (2017).
50. Trapnell, C.et al.The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.Nat. Biotechnol. 32, 381-386 (2014).
51. Chang, T. H.et al.LGR5(+) epithelial tumor stem-like cells generate a 3D-organoid model for ameloblastoma.Cell Death Dis. 11, 338(2020).
52. Driehuis, E.et al.Oral mucosal organoids as a potential platform for personalized cancer therapy.Cancer Discov. 9, 852-871 (2019).
53. O’Rourke, K. P., Dow, L. E. & Lowe, A. S. W. Immunofluorescent staining of mouse intestinal stem cells. Bio Protoc. 9, e1732(2016). 6.
54. Yumoto K., Berry J. E., Taichman R. S.& Shiozawa, Y. A novel method for monitoring tumor proliferation in vivo using fluorescent dye DiD.Cytom. A 85, 548-555 (2014).
55. Wang, N.et al.The frequency of osteolytic bone metastasis is determined by conditions of the soil, not the number of seeds; evidence from in vivo models of breast and prostate cancer.J. Exp. Clin. Cancer Res. 34, 124(2015).
56. Wang, N.et al.Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models.J. Bone Min. Res. 29, 2688-2696 (2014).
PDF

Accesses

Citations

Detail

Sections
Recommended

/