The neutrophil-osteogenic cell axis promotes bone destruction in periodontitis

Yutaro Ando1,2,3, Masayuki Tsukasaki4, Nam Cong-Nhat Huynh1,5, Shizao Zang1, Minglu Yan1, Ryunosuke Muro1, Kazutaka Nakamura1,6, Masatsugu Komagamine1,7, Noriko Komatsu1, Kazuo Okamoto4, Kenta Nakano8, Tadashi Okamura8, Akira Yamaguchi3, Kazuyuki Ishihara2,3, Hiroshi Takayanagi1

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 18. DOI: 10.1038/s41368-023-00275-8

The neutrophil-osteogenic cell axis promotes bone destruction in periodontitis

  • Yutaro Ando1,2,3, Masayuki Tsukasaki4, Nam Cong-Nhat Huynh1,5, Shizao Zang1, Minglu Yan1, Ryunosuke Muro1, Kazutaka Nakamura1,6, Masatsugu Komagamine1,7, Noriko Komatsu1, Kazuo Okamoto4, Kenta Nakano8, Tadashi Okamura8, Akira Yamaguchi3, Kazuyuki Ishihara2,3, Hiroshi Takayanagi1
Author information +
History +

Abstract

The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction by inducing receptor activator of nuclear factor-κB ligand (RANKL) expression in osteogenic cells such as osteoblasts and periodontal ligament cells. However, the detailed mechanism underlying immune-bone cell interactions in periodontitis is not fully understood. Here, we performed single-cell RNA-sequencing analysis on mouse periodontal lesions and showed that neutrophil-osteogenic cell crosstalk is involved in periodontitis-induced bone loss. The periodontal lesions displayed marked infiltration of neutrophils, and in silico analyses suggested that the neutrophils interacted with osteogenic cells through cytokine production. Among the cytokines expressed in the periodontal neutrophils, oncostatin M (OSM) potently induced RANKL expression in the primary osteoblasts, and deletion of the OSM receptor in osteogenic cells significantly ameliorated periodontitis-induced bone loss. Epigenomic data analyses identified the OSM-regulated RANKL enhancer region in osteogenic cells, and mice lacking this enhancer showed decreased periodontal bone loss while maintaining physiological bone metabolism. These findings shed light on the role of neutrophils in bone regulation during bacterial infection, highlighting the novel mechanism underlying osteoimmune crosstalk.

Cite this article

Download citation ▾
Yutaro Ando, Masayuki Tsukasaki, Nam Cong-Nhat Huynh, Shizao Zang, Minglu Yan, Ryunosuke Muro, Kazutaka Nakamura, Masatsugu Komagamine, Noriko Komatsu, Kazuo Okamoto, Kenta Nakano, Tadashi Okamura, Akira Yamaguchi, Kazuyuki Ishihara, …Hiroshi Takayanagi. The neutrophil-osteogenic cell axis promotes bone destruction in periodontitis. International Journal of Oral Science, 2024, 16(0): 18 https://doi.org/10.1038/s41368-023-00275-8

References

1. Lamont, R. J., Koo, H.& Hajishengallis, G. The oral microbiota: dynamic communities and host interactions.Nat. Rev. Microbiol. 16, 745-759 (2018).
2. Darveau R. P.Periodontitis: a polymicrobial disruption of host homeostasis.Nat. Rev. Microbiol. 8, 481-490 (2010).
3. Maekawa, T.et al.Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis.Cell Host Microbe 15, 768-778 (2014).
4. Tsukasaki, M.et al.Host defense against oral microbiota by bone-damaging T cells.Nat. Commun. 9, 701(2018).
5. Tsukasaki M.& Takayanagi, H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease.Nat. Rev. Immunol. 19, 626-642 (2019).
6. Hajishengallis G.& Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities.Nat. Rev. Immunol. 21, 426-440 (2021).
7. Genco R. J.& Sanz, M. Clinical and public health implications of periodontal and systemic diseases: An overview.Periodontol 2000 83, 7-13 (2020).
8. Xiao, E.et al. Diabetes Enhances IL-17 Expression and Alters the Oral Microbiome to Increase Its Pathogenicity. Cell Host Microbe 22, 120-128.e4 (2017).
9. Graves, D. T., Ding, Z.& Yang, Y. The impact of diabetes on periodontal diseases.Periodontol 2000 82, 214-224 (2020).
10. Mammen, M. J., Scannapieco, F. A.& Sethi, S. Oral-lung microbiome interactions in lung diseases.Periodontol 2000 83, 234-241 (2020).
11. Kitamoto, S.et al. The Intermucosal Connection between the Mouth and Gut in Commensal Pathobiont-Driven Colitis. Cell 182, 447-462.e14 (2020).
12. Caetano, A. J.et al.Defining human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease.Elife 10, e62810(2021).
13. Caetano A. J.,Human Cell Atlas Oral and Craniofacial Bionetwork, Sequeira, I. & Byrd, K. M. A Roadmap for the Human Oral and Craniofacial Cell Atlas.J. Dent. Res. 101, 1274-1288 (2022).
14. Caetano, A. J.et al.Spatially resolved transcriptomics reveals pro-inflammatory fibroblast involved in lymphocyte recruitment through CXCL8 and CXCL10.Elife 12, e81525(2023).
15. Qian, S.-J.et al.Single-cell RNA sequencing identifies new inflammation-promoting cell subsets in Asian patients with chronic periodontitis.Front. Immunol. 12, 711337(2021).
16. Williams, D. W.et al. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell 184, 4090-4104.e15 (2021).
17. Kondo T., Gleason A., Okawa H., Hokugo A.& Nishimura, I. Mouse gingival single-cell transcriptomic atlas: An activated fibroblast subpopulation guides oral barrier immunity in periodontitis. eLife https://doi.org/10.7554/elife.88183(2023).
18. Kondo, T.et al.Oral microbial extracellular DNA initiates periodontitis through gingival degradation by fibroblast-derived cathepsin K in mice.Commun. Biol. 5, 962(2022).
19. Abe T.& Hajishengallis, G. Optimization of the ligature-induced periodontitis model in mice.J. Immunol. Methods 394, 49-54 (2013).
20. Dutzan, N.et al.A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans.Sci. Transl. Med. 10, eaat0797 (2018).
21. Udagawa, N.et al.Osteoclast differentiation by RANKL and OPG signaling pathways.J. Bone Miner. Metab. 39, 19-26 (2021).
22. Tsukasaki M.RANKL and osteoimmunology in periodontitis.J. Bone Miner. Metab. 39, 82-90 (2021).
23. Kourtzelis, I.et al.DEL-1 promotes macrophage efferocytosis and clearance of inflammation.Nat. Immunol. 20, 40-49 (2019).
24. Men, Y.et al. Gli1+ periodontium stem cells are regulated by osteocytes and occlusal force. Dev. Cell 54, 639-654.e6 (2020).
25. Iwayama, T.et al.Plap-1 lineage tracing and single-cell transcriptomics reveal cellular dynamics in the periodontal ligament.Development 149, dev201203 (2022).
26. Jin, S.et al.Inference and analysis of cell-cell communication using CellChat.Nat. Commun. 12, 1088(2021).
27. Eskan, M. A.et al.The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss.Nat. Immunol. 13, 465-473 (2012).
28. Shin, J.et al. DEL-1 restrains osteoclastogenesis and inhibits inflammatory bone loss in nonhuman primates. Sci. Transl. Med. 7, 307ra155 (2015).
29. Schmidt E. P., Lee W. L., Zemans R. L., Yamashita C.& Downey, G. P. On, around, and through: neutrophil-endothelial interactions in innate immunity.Physiology 26, 334-347 (2011).
30. Hajishengallis G.New developments in neutrophil biology and periodontitis.Periodontol 2000 82, 78-92 (2020).
31. Walker, E. C.et al.Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice.J. Clin. Invest. 120, 582-592 (2010).
32. Galli, C.et al.Targeted deletion of a distant transcriptional enhancer of the receptor activator of nuclear factor-kappaB ligand gene reduces bone remodeling and increases bone mass.Endocrinology 149, 146-153 (2008).
33. Onal, M.et al.Unique distal enhancers linked to the mouse Tnfsf11 gene direct tissue-specific and inflammation-induced expression of RANKL.Endocrinology 157, 482-496 (2016).
34. Bishop, K. A., Meyer, M. B.& Pike, J. W. A novel distal enhancer mediates cytokine induction of mouse RANKl gene expression.Mol. Endocrinol. 23, 2095-2110 (2009).
35. Onal, M.et al.The RANKL distal control region is required for the increase in RANKL expression, but not the bone loss, associated with hyperparathyroidism or lactation in adult mice.Mol. Endocrinol. 26, 341-348 (2012).
36. Silva, L. M., Kim, T. S.& Moutsopoulos, N. M. Neutrophils are gatekeepers of mucosal immunity.Immunol. Rev. 314, 125-141 (2023).
37. Dutzan N., Konkel J. E., Greenwell-Wild, T. & Moutsopoulos, N. M. Characterization of the human immune cell network at the gingival barrier.Mucosal Immunol. 9, 1163-1172 (2016).
38. Landzberg M., Doering H., Aboodi G. M., Tenenbaum H. C.& Glogauer, M. Quantifying oral inflammatory load: oral neutrophil counts in periodontal health and disease.J. Periodontal Res. 50, 330-336 (2015).
39. Silva, L. M.et al.Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier.Science 374, eabl5450 (2021).
40. Kim, T. S.et al.Neutrophil extracellular traps and extracellular histones potentiate IL-17 inflammation in periodontitis.J. Exp. Med. 220, e20221751(2023).
41. Assuma R., Oates T., Cochran D., Amar S.& Graves, D. T. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis.J. Immunol. 160, 403-409 (1998).
42. Hajishengallis, G., Lamont, R. J.& Graves, D. T. The enduring importance of animal models in understanding periodontal disease.Virulence 6, 229-235 (2015).
43. Fan, Y.et al.Creating an atlas of the bone microenvironment during oral inflammatory-related bone disease using single-cell profiling.Elife 12, e82537(2023).
44. Cai, B.et al.N2-polarized neutrophils guide bone mesenchymal stem cell recruitment and initiate bone regeneration: a missing piece of the bone regeneration puzzle.Adv. Sci. 8, e2100584(2021).
45. Moutsopoulos, N. M.et al. Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci. Transl. Med. 6, 229ra40 (2014).
46. Moutsopoulos, N. M.et al.Interleukin-12 and Interleukin-23 blockade in leukocyte adhesion deficiency type 1.N. Engl. J. Med. 376, 1141-1146 (2017).
47. West, N. R., Owens, B. M.J. & Hegazy, A. N. The oncostatin M-stromal cell axis in health and disease.Scand. J. Immunol. 88, e12694(2018).
48. Boniface, K.et al.Oncostatin M secreted by skin infiltrating T lymphocytes is a potent keratinocyte activator involved in skin inflammation.J. Immunol. 178, 4615-4622 (2007).
49. Okamoto, H.et al.The synovial expression and serum levels of interleukin-6, interleukin-11, leukemia inhibitory factor, and oncostatin M in rheumatoid arthritis.Arthritis Rheum. 40, 1096-1105 (1997).
50. Lin, W.et al.Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution.Bone Res. 9, 17(2021).
51. Torossian, F.et al.Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications.JCI Insight 2, e96034(2017).
52. West, N. R.et al.Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease.Nat. Med. 23, 579-589 (2017).
53. Friedrich, M.et al.IL-1-driven stromal-neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies.Nat. Med. 27, 1970-1981 (2021).
54. Lin S.-J., Chen Y.-L., Kuo M. Y.-B., Li, C.-L. & Lu, H.-K. Measurement of gp130 cytokines oncostatin M and IL-6 in gingival crevicular fluid of patients with chronic periodontitis.Cytokine 30, 160-167 (2005).
55. Okamoto, K.et al.Osteoimmunology: the conceptual framework unifying the immune and skeletal systems.Physiol. Rev. 97, 1295-1349 (2017).
56. Kim S., Yamazaki M., Shevde N. K.& Pike, J. W. Transcriptional control of receptor activator of nuclear factor-kappaB ligand by the protein kinase A activator forskolin and the transmembrane glycoprotein 130-activating cytokine, oncostatin M, is exerted through multiple distal enhancers.Mol. Endocrinol. 21, 197-214 (2007).
57. Meyer M. B., Benkusky N. A., Lee C.-H.& Pike, J. W. Genomic determinants of gene regulation by 1,25-Dihydroxyvitamin D3 during osteoblast-lineage cell differentiation.J. Biol. Chem. 289, 19539-19554 (2014).
58. Yan, M.et al.Identification of an intronic enhancer regulating RANKL expression in osteocytic cells.Bone Res. 11, 43(2023).
59. Yan, M.et al.ETS1 governs pathological tissue-remodeling programs in disease-associated fibroblasts.Nat. Immunol. 23, 1330-1341 (2022).
60. Onal M.,St John, H. C., Danielson, A. L. & Pike, J. W. Deletion of the distal Tnfsf11 RL-D2 enhancer that contributes to PTH-Mediated RANKL expression in osteoblast lineage cells results in a high bone mass phenotype in mice.J. Bone Miner. Res. 31, 416-429 (2016).
61. Zhou, Y.et al.RANKL+ senescent cells under mechanical stress: a therapeutic target for orthodontic root resorption using senolytics.Int. J. Oral. Sci. 15, 20(2023).
62. Wang, Q.et al.Single-cell transcriptomic atlas of gingival mucosa in type 2 diabetes.J. Dent. Res. 101, 1654-1664 (2022).
63. O’Brien, C. A. Control of RANKL gene expression.Bone 46, 911-919 (2010).
64. Tsukasaki M.& Takayanagi, H. Osteoclast biology in the single-cell era.Inflamm. Regen. 42, 27(2022).
65. Armingol E., Officer A., Harismendy O.& Lewis, N. E. Deciphering cell-cell interactions and communication from gene expression.Nat. Rev. Genet. 22, 71-88 (2021).
66. Robinson, J. T.et al.Integrative genomics viewer.Nat. Biotechnol. 29, 24-26 (2011).
67. Castro-Mondragon, J. A. et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles.Nucleic Acids Res. 50, D165-D173 (2022).
68. Grant, C. E., Bailey, T. L.& Noble, W. S. FIMO: scanning for occurrences of a given motif.Bioinformatics 27, 1017-1018 (2011).
PDF

Accesses

Citations

Detail

Sections
Recommended

/