Tim4 deficiency reduces CD301b+ macrophage and aggravates periodontitis bone loss

Ziming Wang1, Hao Zeng1, Can Wang1, Jiaolong Wang2, Jing Zhang1, Shuyuan Qu1, Yue Han1, Liu Yang1, Yueqi Ni1, Wenan Peng1, Huan Liu1, Hua Tang3, Qin Zhao1, Yufeng Zhang1,4

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 20. DOI: 10.1038/s41368-023-00270-z
ARTICLE

Tim4 deficiency reduces CD301b+ macrophage and aggravates periodontitis bone loss

  • Ziming Wang1, Hao Zeng1, Can Wang1, Jiaolong Wang2, Jing Zhang1, Shuyuan Qu1, Yue Han1, Liu Yang1, Yueqi Ni1, Wenan Peng1, Huan Liu1, Hua Tang3, Qin Zhao1, Yufeng Zhang1,4
Author information +
History +

Abstract

Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss. With the progression of periodontitis, the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption. CD301b+ macrophages are specific to the osteoimmunology microenvironment, and are emerging as vital booster for conducting bone regeneration. However, the key upstream targets of CD301b+ macrophages and their potential mechanism in periodontitis remain elusive. In this study, we concentrated on the role of Tim4, a latent upstream regulator of CD301b+ macrophages. We first demonstrated that the transcription level of Timd4 (gene name of Tim4) in CD301b+ macrophages was significantly upregulated compared to CD301b- macrophages via high-throughput RNA sequencing. Moreover, several Tim4-related functions such as apoptotic cell clearance, phagocytosis and engulfment were positively regulated by CD301b+ macrophages. The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages. The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b+ macrophages as periodontitis progressed. Furthermore, the deficiency of Tim4 in mice decreased CD301b+ macrophages and eventually magnified alveolar bone resorption in periodontitis. Additionally, Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b+ macrophages phenotype. In a word, Tim4 might regulate CD301b+ macrophages through p38 MAPK signaling pathway in periodontitis, which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.

Cite this article

Download citation ▾
Ziming Wang, Hao Zeng, Can Wang, Jiaolong Wang, Jing Zhang, Shuyuan Qu, Yue Han, Liu Yang, Yueqi Ni, Wenan Peng, Huan Liu, Hua Tang, Qin Zhao, …Yufeng Zhang. Tim4 deficiency reduces CD301b+ macrophage and aggravates periodontitis bone loss. International Journal of Oral Science, 2024, 16(0): 20 https://doi.org/10.1038/s41368-023-00270-z

References

1. Darveau R. P.Periodontitis: a polymicrobial disruption of host homeostasis.Nat. Rev. Microbiol. 8, 481-490 (2010).
2. Hajishengallis G.Periodontitis: from microbial immune subversion to systemic inflammation.Nat. Rev. Immunol. 15, 30-44 (2015).
3. Slots J.Periodontitis: facts, fallacies and the future.Periodontol 2000 75, 7-23 (2017).
4. Peres, M. A.et al.Oral diseases: a global public health challenge.Lancet 394, 249-260 (2019).
5. Nazir, M.et al.Global prevalence of periodontal disease and lack of its surveillance.ScientificWorldJournal 2020, 2146160(2020).
6. Marchesan, J.et al.An experimental murine model to study periodontitis.Nat. Protoc. 13, 2247-2267 (2018).
7. Zhao, Q.et al.A zinc- and calcium-rich lysosomal nanoreactor rescues monocyte/macrophage dysfunction under sepsis.Adv. Sci. 10, e2205097(2023).
8. Chen, Y.et al.Single-cell RNA landscape of the osteoimmunology microenvironment in periodontitis.Theranostics 12, 1074-1096 (2022).
9. Lin J., Huang D., Xu H., Zhan F.& Tan, X. Macrophages: a communication network linking Porphyromonas gingivalis infection and associated systemic diseases.Front. Immunol. 13, 952040(2022).
10. Hasturk, H., Kantarci, A.& Van Dyke, T. E. Oral inflammatory diseases and systemic inflammation: role of the macrophage.Front. Immunol. 3, 118(2012).
11. Viniegra, A.et al.Resolving macrophages counter osteolysis by anabolic actions on bone cells.J. Dent. Res. 97, 1160-1169 (2018).
12. Mantovani A., Sozzani S., Locati M., Allavena P.& Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes.Trends Immunol. 23, 549-555 (2002).
13. Choi, K. M.et al. CD206-positive M2 macrophages that express heme oxygenase-1 protect against diabetic gastroparesis in mice. Gastroenterology 138, 2399-2409 (2010). 2409.e2391.
14. Gubin, M. M.et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 175, 1014-1030.e1019 (2018).
15. Shook B., Xiao E., Kumamoto Y., Iwasaki A.& Horsley, V. CD301b+ macrophages are essential for effective skin wound healing.J. Investig. Dermatol. 136, 1885-1891 (2016).
16. Shook, B. A.et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 362, https://doi.org/10.1126/science.aar2971 (2018).
17. Sommerfeld, S. D.et al. Interleukin-36γ-producing macrophages drive IL-17-mediated fibrosis. Sci. Immunol. 4, https://doi.org/10.1126/sciimmunol.aax4783 (2019).
18. Wang J.et al. Break monopoly of polarization: CD301b+ macrophages play positive roles in osteoinduction of calcium phosphate ceramics. Appl. Mater. Today 24, https://doi.org/10.1016/j.apmt.2021.101111(2021).
19. Wang, N.et al. CD301b+ Macrophages as potential target to improve orthodontic treatment under mild inflammation. Cells 12, https://doi.org/10.3390/cells12010135 (2022).
20. Wang, C.et al.CD301b(+) macrophage: the new booster for activating bone regeneration in periodontitis treatment.Int. J. Oral Sci. 15, 19(2023).
21. You, D. G.et al.Stem cell-derived extracellular vesicle-bearing dermal filler ameliorates the dermis microenvironment by supporting CD301b-expressing macrophages.ACS Nano 16, 251-260 (2022).
22. An, Y.et al.Exosomes from adipose-derived stem cells and application to skin wound healing.Cell Prolif. 54, e12993(2021).
23. Wei, X.et al.Surface phosphatidylserine is responsible for the internalization on microvesicles derived from hypoxia-induced human bone marrow mesenchymal stem cells into human endothelial cells.PLoS ONE 11, e0147360(2016).
24. Savill J.& Gregory, C. Apoptotic PS to phagocyte TIM-4: eat me.Immunity 27, 830-832 (2007).
25. Miyanishi, M.et al.Identification of Tim4 as a phosphatidylserine receptor.Nature 450, 435-439 (2007).
26. Min, C.et al.Tim-4 functions as a scavenger receptor for phagocytosis of exogenous particles.Cell Death Dis. 11, 561(2020).
27. De Maeyer, R. P. H. et al. Blocking elevated p38 MAPK restores efferocytosis and inflammatory resolution in the elderly.Nat. Immunol. 21, 615-625 (2020).
28. Babaeijandaghi, F.et al.Metabolic reprogramming of skeletal muscle by resident macrophages points to CSF1R inhibitors as muscular dystrophy therapeutics.Sci. Transl. Med. 14, eabg7504 (2022).
29. Bhattacharya, P.et al.Efferocytes release extracellular vesicles to resolve inflammation and tissue injury via prosaposin-GPR37 signaling.Cell Rep. 42, 112808(2023).
30. Lee, J.et al.A scaffold for signaling of Tim-4-mediated efferocytosis is formed by fibronectin.Cell Death Differ. 26, 1646-1655 (2019).
31. Wang, J.et al.Break monopoly of polarization: CD301b+ macrophages play positive roles in osteoinduction of calcium phosphate ceramics.Appl. Mater. Today 24, 101111(2021).
32. Cheng, S.et al. The intrinsic and extrinsic effects of TET proteins during gastrulation. Cell 185, 3169-3185.e3120 (2022).
33. Wu H., Xu X., Li J., Gong J.& Li, M. TIM-4 blockade of KCs combined with exogenous TGF-β injection helps to reverse acute rejection and prolong the survival rate of mice receiving liver allografts.Int. J. Mol. Med. 42, 346-358 (2018).
34. Qin, D.et al.TIM-4 in macrophages contributes to nasal polyp formation through the TGF-β1-mediated epithelial to mesenchymal transition in nasal epithelial cells.Front. Immunol. 13, 941608(2022).
35. Yeung, M. Y.et al.Interruption of dendritic cell-mediated TIM-4 signaling induces regulatory T cells and promotes skin allograft survival.J. Immunol. 191, 4447-4455 (2013).
36. Wang, J.et al.CD301b(+) macrophages mediate angiogenesis of calcium phosphate bioceramics by CaN/NFATc1/VEGF axis.Bioact. Mater. 15, 446-455 (2022).
37. Knudsen N. H.& Lee, C. H. Identity crisis: CD301b(+) mononuclear phagocytes blur the M1-M2 macrophage line.Immunity 45, 461-463 (2016).
38. Kumamoto, Y.et al.CD301b(+) mononuclear phagocytes maintain positive energy balance through secretion of resistin-like molecule alpha.Immunity 45, 583-596 (2016).
39. Meier, L. A.et al.CD301b/MGL2(+) mononuclear phagocytes orchestrate autoimmune cardiac valve inflammation and fibrosis.Circulation 137, 2478-2493 (2018).
40. Magalhaes, M. S.et al.Role of Tim4 in the regulation of ABCA1(+) adipose tissue macrophages and post-prandial cholesterol levels.Nat. Commun. 12, 4434(2021).
41. Huh J. Y.& Kim, J. B. TIM4(+) adipose tissue-resident macrophages: new modulators of adiposity.Nat. Rev. Endocrinol. 17, 645-646 (2021).
42. Félix, I.et al.Single-cell proteomics reveals the defined heterogeneity of resident macrophages in white adipose tissue.Front Immunol. 12, 719979(2021).
43. Ding, L.et al.T-cell immunoglobulin- and mucin-domain-containing molecule-4 maintains adipose tissue homeostasis by orchestrating M2 macrophage polarization via nuclear factor kappa B pathway.Immunology 168, 49-62 (2023).
44. Hoeffel, G.et al.Sensory neuron-derived TAFA4 promotes macrophage tissue repair functions.Nature 594, 94-99 (2021).
45. Raes, G.et al.Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation.J. Leukoc. Biol. 77, 321-327 (2005).
46. Allen J. E.IL-4 and IL-13: regulators and effectors of wound repair.Annu. Rev. Immunol. 41, 229-254 (2023).
47. Huang, X.et al.M2 macrophages with inflammation tropism facilitate cementoblast mineralization.J. Periodontol. 94, 290-300 (2023).
48. Zhao, Q.et al.Dual-wavelength photosensitive nano-in-micro scaffold regulates innate and adaptive immune responses for osteogenesis.Nanomicro Lett. 13, 28(2020).
49. Yin, C.et al.Transcription factor 7-like 2 promotes osteogenic differentiation and boron-induced bone repair via lipocalin 2.Mater. Sci. Eng. C. Mater. Biol. Appl. 110, 110671(2020).
50. Wei, Y.et al.Individualized plasticity autograft mimic with efficient bioactivity inducing osteogenesis.Int. J. Oral. Sci. 13, 14(2021).
51. Yan, J.et al.Gut microbiota induce IGF-1 and promote bone formation and growth.Proc. Natl Acad. Sci. USA 113, E7554-e7563 (2016).
52. Greenblatt, M. B.et al.The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice.J. Clin. Investig. 120, 2457-2473 (2010).
53. Nagai, T.et al.Tmem161a regulates bone formation and bone strength through the P38 MAPK pathway.Sci. Rep. 13, 14639(2023).
54. Netea, M. G.et al.Interleukin-32 induces the differentiation of monocytes into macrophage-like cells.Proc. Natl Acad. Sci. USA 105, 3515-3520 (2008).
55. Cui, J.et al.p38 MAPK contributes to CD54 expression and the enhancement of phagocytic activity during macrophage development.Cell Immunol. 256, 6-11 (2009).
56. Yu, X.et al.A novel miR-200b-3p/p38IP pair regulates monocyte/macrophage differentiation.Cell Discov. 2, 15043(2016).
57. Martina, J. A., Jeong, E.& Puertollano, R. p38 MAPK-dependent phosphorylation of TFEB promotes monocyte-to-macrophage differentiation.EMBO Rep. 24, e55472(2023).
58. Abe T.& Hajishengallis, G. Optimization of the ligature-induced periodontitis model in mice.J. Immunol. Methods 394, 49-54 (2013).
59. Kitamoto, S.et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 182, 447-462.e414 (2020).
PDF

Accesses

Citations

Detail

Sections
Recommended

/