Sema3A secreted by sensory nerve induces bone formation under mechanical loads

Hongxiang Mei1, Zhengzheng Li1, Qinyi Lv1, Xingjian Li1, Yumeng Wu1, Qingchen Feng1, Zhishen Jiang1, Yimei Zhou1, Yule Zheng1, Ziqi Gao1, Jiawei Zhou1, Chen Jiang1, Shishu Huang2, Juan Li1

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 5. DOI: 10.1038/s41368-023-00269-6

Sema3A secreted by sensory nerve induces bone formation under mechanical loads

  • Hongxiang Mei1, Zhengzheng Li1, Qinyi Lv1, Xingjian Li1, Yumeng Wu1, Qingchen Feng1, Zhishen Jiang1, Yimei Zhou1, Yule Zheng1, Ziqi Gao1, Jiawei Zhou1, Chen Jiang1, Shishu Huang2, Juan Li1
Author information +
History +

Abstract

Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A (Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement (OTM) model. Firstly, bone formation was activated after the 3rd day of OTM, coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor (NGF), highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells (hPDLCs) within 24 hours. Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.

Cite this article

Download citation ▾
Hongxiang Mei, Zhengzheng Li, Qinyi Lv, Xingjian Li, Yumeng Wu, Qingchen Feng, Zhishen Jiang, Yimei Zhou, Yule Zheng, Ziqi Gao, Jiawei Zhou, Chen Jiang, Shishu Huang, …Juan Li. Sema3A secreted by sensory nerve induces bone formation under mechanical loads. International Journal of Oral Science, 2024, 16(0): 5 https://doi.org/10.1038/s41368-023-00269-6

References

1. Carina, V.et al.Bone’s response to mechanical loading in aging and osteoporosis: molecular mechanisms.Calcif. Tissue Int. 107, 301-318 (2020).
2. Wang, L.et al.Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk.Nat. Commun. 11, 282(2020).
3. Robling, A. G., Castillo, A. B.& Turner, C. H. Biomechanical and molecular regulation of bone remodeling.Annu. Rev. Biomed. Eng. 8, 455-498 (2006).
4. Wang L., You X., Zhang L., Zhang C.& Zou, W. Mechanical regulation of bone remodeling.Bone Res. 10, 16(2022).
5. Wise G. E.& King, G. J. Mechanisms of tooth eruption and orthodontic tooth movement.J. Dent. Res. 87, 414-434 (2008).
6. Long, H.et al.Current advances in orthodontic pain.Int. J. Oral. Sci. 8, 67-75 (2016).
7. Kondo, H.et al.Orthodontic tooth movement-activated sensory neurons contribute to enhancing osteoclast activity and tooth movement through sympathetic nervous signalling.Eur. J. Orthod. 44, 404-411 (2022).
8. Tomlinson, R. E.et al.NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice.Proc. Natl. Acad. Sci. USA 114, E3632-e3641 (2017).
9. Wan, Q. Q.et al.Crosstalk between bone and nerves within bone.Adv. Sci. 8, 2003390(2021).
10. Ter Heegde, F. et al. Osteoarthritis-related nociceptive behaviour following mechanical joint loading correlates with cartilage damage.Osteoarthr. Cartil. 28, 383-395 (2020).
11. Ter Heegde, F. et al. Noninvasive mechanical joint loading as an alternative model for osteoarthritic pain.Arthritis Rheumatol. 71, 1078-1088 (2019).
12. Heffner, M. A., Genetos, D. C.& Christiansen, B. A. Bone adaptation to mechanical loading in a mouse model of reduced peripheral sensory nerve function.PLoS ONE 12, e0187354(2017).
13. Dontchev V. D.& Letourneau, P. C. Nerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility.J. Neurosci. 22, 6659-6669 (2002).
14. Kaselis A., Treinys R., Vosyliūtė R.& Šatkauskas, S. DRG axon elongation and growth cone collapse rate induced by Sema3A are differently dependent on NGF concentration.Cell. Mol. Neurobiol. 34, 289-296 (2014).
15. Yamashita N., Yamane M., Suto F.& Goshima, Y. TrkA mediates retrograde semaphorin 3A signaling through plexin A4 to regulate dendritic branching.J. Cell Sci. 129, 1802-1814 (2016).
16. Joddar B., Guy A. T., Kamiguchi H.& Ito, Y. Spatial gradients of chemotropic factors from immobilized patterns to guide axonal growth and regeneration.Biomaterials 34, 9593-9601 (2013).
17. Tomlinson, R. E.et al.NGF-TrkA signaling by sensory nerves coordinates the vascularization and ossification of developing endochondral bone.Cell Rep. 16, 2723-2735 (2016).
18. Meyers, C. A.et al.A neurotrophic mechanism directs sensory nerve transit in cranial bone.Cell Rep. 31, 107696(2020).
19. Leitão, L.et al.Osteoblasts are inherently programmed to repel sensory innervation.Bone Res. 8, 20(2020).
20. Fukuda, T.et al.Sema3A regulates bone-mass accrual through sensory innervations.Nature 497, 490-493 (2013).
21. Hayashi, M.et al. Autoregulation of osteocyte Sema3A orchestrates estrogen action and counteracts bone aging. Cell Metab. 29, 627-637.e625 (2019).
22. Yamashita Y., Hayashi M., Saito, M. & Nakashima, T. Osteoblast lineage cell-derived Sema3A regulates bone homeostasis independently of androgens. Endocrinology, https://doi.org/10.1210/endocr/bqac126 (2022).
23. Zhang N., Hua Y., Li Y.& Pan, J. Sema3A accelerates bone formation during distraction osteogenesis in mice.Connect. Tissue Res. 63, 382-392 (2022).
24. Brown J. A.& Bridgman, P. C. Disruption of the cytoskeleton during Semaphorin 3A induced growth cone collapse correlates with differences in actin organization and associated binding proteins.Dev. Neurobiol. 69, 633-646 (2009).
25. Gallo G.RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction.J. Cell Sci. 119, 3413-3423 (2006).
26. Peng, Y.et al.ROCK isoforms differentially modulate cancer cell motility by mechanosensing the substrate stiffness.Acta Biomater. 88, 86-101 (2019).
27. Yang C.& Svitkina, T. M. Ultrastructure and dynamics of the actin-myosin II cytoskeleton during mitochondrial fission.Nat. Cell Biol. 21, 603-613 (2019).
28. Bartolák-Suki E., Imsirovic J., Nishibori Y., Krishnan, R. & Suki, B. Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18081812 (2017).
29. Zacharioudakis, E.et al.Modulating mitofusins to control mitochondrial function and signaling.Nat. Commun. 13, 3775(2022).
30. Li, Z.et al.Fracture repair requires TrkA signaling by skeletal sensory nerves.J. Clin. Investig. 129, 5137-5150 (2019).
31. Qin, Q.et al.Neuron-to-vessel signaling is a required feature of aberrant stem cell commitment after soft tissue trauma.Bone Res. 10, 43(2022).
32. Xu, J.et al.NGF-p75 signaling coordinates skeletal cell migration during bone repair.Sci. Adv. 8, eabl5716 (2022).
33. Lee, S.et al.NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma.Nat. Commun. 12, 4939(2021).
34. Gao, M.et al.Retrograde nerve growth factor signaling modulates tooth mechanical hyperalgesia induced by orthodontic tooth movement via acid-sensing ion channel 3.Int. J. Oral. Sci. 13, 18(2021).
35. Jawaid, M., Qadeer, T. A.& Fahim, M. F. Pain perception of orthodontic treatment—a cross-sectional study.Pak. J. Med. Sci. 36, 160-165 (2020).
36. Castañeda-Corral, G. et al. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A.Neuroscience 178, 196-207 (2011).
37. Wong, L. S., Lee, C. H. & Yen, Y. T. Increased epidermal nerve growth factor without small-fiber neuropathy in dermatomyositis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23169030 (2022).
38. Tominaga M., Tengara S., Kamo A., Ogawa H.& Takamori, K. Psoralen-ultraviolet A therapy alters epidermal Sema3A and NGF levels and modulates epidermal innervation in atopic dermatitis.J. Dermatol. Sci. 55, 40-46 (2009).
39. Kamo A., Tominaga M., Tengara S., Ogawa H.& Takamori, K. Inhibitory effects of UV-based therapy on dry skin-inducible nerve growth in acetone-treated mice.J. Dermatol. Sci. 62, 91-97 (2011).
40. Tang, X. Q., Tanelian, D. L.& Smith, G. M. Semaphorin3A inhibits nerve growth factor-induced sprouting of nociceptive afferents in adult rat spinal cord.J. Neurosci. 24, 819-827 (2004).
41. Ingber D. E.Tensegrity-based mechanosensing from macro to micro.Prog. Biophys. Mol. Biol. 97, 163-179 (2008).
42. Gould N. R., Torre O. M., Leser J. M.& Stains, J. P. The cytoskeleton and connected elements in bone cell mechano-transduction.Bone 149, 115971(2021).
43. Wang Y. F., Zuo Z. H., Luo P., Pang F. S.& Hu, J. T. The effect of cyclic tensile force on the actin cytoskeleton organization and morphology of human periodontal ligament cells.Biochem. Biophys. Res. Commun. 506, 950-955 (2018).
44. Curreli S., Wong B. S., Latinovic O., Konstantopoulos K.& Stamatos, N. M. Class 3 semaphorins induce F-actin reorganization in human dendritic cells: role in cell migration.J. Leukoc. Biol. 100, 1323-1334 (2016).
45. Västrik I., Eickholt B. J., Walsh F. S., Ridley A.& Doherty, P. Sema3A-induced growth-cone collapse is mediated by Rac1 amino acids 17-32.Curr. Biol. 9, 991-998 (1999).
46. Wu, K. Y.et al.Local translation of RhoA regulates growth cone collapse.Nature 436, 1020-1024 (2005).
47. Deglincerti, A.et al.Coupled local translation and degradation regulate growth cone collapse.Nat. Commun. 6, 6888(2015).
48. Janota C. S.,Calero-Cuenca, F. J. & Gomes, E. R. The role of the cell nucleus in mechanotransduction.Curr. Opin. Cell Biol. 63, 204-211 (2020).
49. Hamant O., Inoue D., Bouchez D., Dumais J.& Mjolsness, E. Are microtubules tension sensors?Nat. Commun. 10, 2360(2019).
50. Ni, H. M., Williams, J. A.& Ding, W. X. Mitochondrial dynamics and mitochondrial quality control.Redox Biol. 4, 6-13 (2015).
51. Fenton, A. R., Jongens, T. A.& Holzbaur, E. L. F. Mitochondrial dynamics: shaping and remodeling an organelle network.Curr. Opin. Cell Biol. 68, 28-36 (2021).
52. Schwamborn, J. C.et al.Semaphorin 3A stimulates neurite extension and regulates gene expression in PC12 cells.J. Biol. Chem. 279, 30923-30926 (2004).
53. Verburg J.& Hollenbeck, P. J. Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling.J. Neurosci. 28, 8306-8315 (2008).
54. Berenbaum, F.et al.Subcutaneous tanezumab for osteoarthritis of the hip or knee: efficacy and safety results from a 24-week randomised phase III study with a 24-week follow-up period.Ann. Rheum. Dis. 79, 800-810 (2020).
55. Hochberg M. C.Serious joint-related adverse events in randomized controlled trials of anti-nerve growth factor monoclonal antibodies.Osteoarthr. Cartil. 23, S18-S21 (2015).
56. Sumi, C.et al.Semaphorin 3A inhibits inflammation in chondrocytes under excessive mechanical stress.Mediators Inflamm. 2018, 5703651(2018).
57. Zhang, C.et al.Parathyroid hormone increases alveolar bone homoeostasis during orthodontic tooth movement in rats with periodontitis via crosstalk between STAT3 and β-catenin.Int. J. Oral. Sci. 12, 38(2020).
58. Zhu, S.et al.Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain.J. Clin. Investig. 129, 1076-1093 (2019).
59. Chaplan S. R., Bach F. W., Pogrel J. W., Chung J. M.& Yaksh, T. L. Quantitative assessment of tactile allodynia in the rat paw.J. Neurosci. Methods 53, 55-63 (1994).
60. Melo, L. T.et al.(-)-α-Bisabolol reduces nociception and trigeminal central sensitisation in acute orofacial neuropathic pain induced by infraorbital nerve injury.Life Sci. 227, 122-128 (2019).
61. Chen, W. J.et al.Unilateral facial injection of Botulinum neurotoxin A attenuates bilateral trigeminal neuropathic pain and anxiety-like behaviors through inhibition of TLR2-mediated neuroinflammation in mice.J. Headache Pain 22, 38(2021).
62. Sood, M., Bhatt, P.& Sessle, B. J. Mechanical and thermal hypersensitivities associated with orthodontic tooth movement: a behavioral rat model for orthodontic tooth movement-induced pain.J. Oral. Facial Pain Headache 29, 60-69 (2015).
63. Long, H.et al.Bite force measurements for objective evaluations of orthodontic tooth movement-induced pain in rats.Arch. Oral. Biol. 101, 1-7 (2019).
64. Suzuki, S. S.et al.Effects of corticopuncture (CP) and low-level laser therapy (LLLT) on the rate of tooth movement and root resorption in rats using micro-CT evaluation.Lasers Med. Sci. 33, 811-821 (2018).
65. Yang, C. Y.et al.RANKL deletion in periodontal ligament and bone lining cells blocks orthodontic tooth movement.Int. J. Oral. Sci. 10, 3(2018).
66. Yamamoto, T.et al.Endothelin receptor-mediated responses in trigeminal ganglion neurons.J. Dent. Res. 92, 335-339 (2013).
PDF

Accesses

Citations

Detail

Sections
Recommended

/