Interleukin-1β induces human cementoblasts to support osteoclastogenesis

Nam C-N Huynh, Vincent Everts, Prasit Pavasant, Ruchanee S Ampornaramveth

International Journal of Oral Science ›› 2017, Vol. 9 ›› Issue (11) : e5-e5.

International Journal of Oral Science All Journals
International Journal of Oral Science ›› 2017, Vol. 9 ›› Issue (11) : e5-e5. DOI: 10.1038/ijos.2017.45
Article

Interleukin-1β induces human cementoblasts to support osteoclastogenesis

Author information +
History +

Abstract

An investigation into the interaction between tooth root cells and an inflammatory protein sheds light on root degradation following injury. Osteoclast cells digest old bone to release nutrients and recycle bone tissues in a vital process called bone resorption. Cementum, the mineral substance covering tooth roots, is not usually resorbed, but injury to the tissues surrounding roots often triggers inflammation followed by root degradation. To understand this phenomenon better, Ruchanee Salingcarnboriboon Ampornaramveth at Chulalongkorn University in Bangkok, Thailand, and co-workers investigated whether cementum cells can promote the formation of osteoclasts. They found that when cementum cells were treated with interleukin 1 beta, an inflammatory protein expressed at high levels in tissues following injury, levels of another protein needed for osteoclast formation increased. This boosted osteoclast formation around roots, resulting in root resorption

Keywords

cementoblast / interleukin-1β / osteoclast / receptor activator of nuclear factor kappa-B ligand / tooth resorption

Cite this article

Download citation ▾
Nam C-N Huynh, Vincent Everts, Prasit Pavasant, Ruchanee S Ampornaramveth. Interleukin-1β induces human cementoblasts to support osteoclastogenesis. International Journal of Oral Science, 2017, 9(11): e5‒e5 https://doi.org/10.1038/ijos.2017.45

References

[1]
Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype?. J Dent Res, 2005, 84(5): 390-406.
CrossRef Google scholar
[2]
Schjott M, Andreasen JO. Emdogain does not prevent progressive root resorption after replantation of avulsed teeth: a clinical study. Dent Traumatol, 2005, 21(1): 46-50.
CrossRef Google scholar
[3]
Graves D. Cytokines that promote periodontal tissue destruction. J Periodontol, 2008, 79(8 Suppl): 1585-1591.
CrossRef Google scholar
[4]
Bloemen V, Schoenmaker T, de Vries TJ. IL-1beta favors osteoclastogenesis via supporting human periodontal ligament fibroblasts. J Cell Biochem, 2011, 112(7): 1890-1897.
CrossRef Google scholar
[5]
Fukushima H, Jimi E, Okamoto F. IL-1-induced receptor activator of NF-kappa B ligand in human periodontal ligament cells involves ERK-dependent PGE2 production. Bone, 2005, 36(2): 267-275.
CrossRef Google scholar
[6]
Shimizu N, Yamaguchi M, Uesu K. Stimulation of prostaglandin E2 and interleukin-1beta production from old rat periodontal ligament cells subjected to mechanical stress. J Gerontol Ser A Biol Sci Med Sci, 2000, 55(10): B489-B495.
CrossRef Google scholar
[7]
Oka H, Miyauchi M, Sakamoto K. PGE2 activates cementoclastogenesis by cementoblasts via EP4. J Dent Res, 2007, 86(10): 974-979.
CrossRef Google scholar
[8]
Huynh NC, Everts V, Pavasant P. Inhibition of histone deacetylases enhances the osteogenic differentiation of human periodontal ligament cells. J Cell Biochem, 2016, 117(6): 1384-1395.
CrossRef Google scholar
[9]
Osathanon T, Ritprajak P, Nowwarote N. Surface-bound orientated Jagged-1 enhances osteogenic differentiation of human periodontal ligament-derived mesenchymal stem cells. J Biomed Mater Res A, 2013, 101(2): 358-367.
CrossRef Google scholar
[10]
MacNeil RL, D'Errico JA, Ouyang H. Isolation of murine cementoblasts: unique cells or uniquely-positioned osteoblasts?. Eur J Oral Sci, 1998, 106(Suppl 1): 350-356.
CrossRef Google scholar
[11]
Kaneda T, Miyauchi M, Takekoshi T. Characteristics of periodontal ligament subpopulations obtained by sequential enzymatic digestion of rat molar periodontal ligament. Bone, 2006, 38(3): 420-426.
CrossRef Google scholar
[12]
Kitagawa M, Tahara H, Kitagawa S. Characterization of established cementoblast-like cell lines from human cementum-lining cells in vitro and in vivo. Bone, 2006, 39(5): 1035-1042.
CrossRef Google scholar
[13]
Gao J, Symons AL, Haase H. Should cementoblasts express alkaline phosphatase activity? Preliminary study of rat cementoblasts in vitro. J Periodontol, 1999, 70(9): 951-959.
CrossRef Google scholar
[14]
Nociti Jr FH, Foster BL, Tran AB. Vitamin D represses dentin matrix protein 1 in cementoblasts and osteocytes. J Dent Res, 2014, 93(2): 148-154.
CrossRef Google scholar
[15]
Wang L, Tran AB, Nociti FH Jr. PTH and vitamin D repress DMP1 in cementoblasts. J Dent Res, 2015, 94(10): 1408-1416.
CrossRef Google scholar
[16]
Groeneveld MC, Everts V, Beertsen W. Alkaline phosphatase activity in the periodontal ligament and gingiva of the rat molar: its relation to cementum formation. J Dent Res, 1995, 74(7): 1374-1381.
CrossRef Google scholar
[17]
Li H, Bartold PM, Young WG. Growth hormone induces bone morphogenetic proteins and bone-related proteins in the developing rat periodontium. J Bone Miner Res, 2001, 16(6): 1068-1076.
CrossRef Google scholar
[18]
Sumanasinghe RD, Pfeiler TW, Monteiro-Riviere NA. Expression of proinflammatory cytokines by human mesenchymal stem cells in response to cyclic tensile strain. J Cell Physiol, 2009, 219(1): 77-83.
CrossRef Google scholar
[19]
Graves DT, Cochran D. The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol, 2003, 74(3): 391-401.
CrossRef Google scholar
[20]
Kanzaki H, Chiba M, Shimizu Y. Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res, 2001, 80(3): 887-891.
CrossRef Google scholar
[21]
Bao X, Liu Y, Han G. The effect on proliferation and differentiation of cementoblast by using sclerostin as inhibitor. Int J Mol Sci, 2013, 14(10): 21140-21152.
CrossRef Google scholar
[22]
Mada Y, Miyauchi M, Oka H. Effects of endogenous and exogenous prostaglandin E2 on the proliferation and differentiation of a mouse cementoblast cell line (OCCM-30). J Periodontol, 2006, 77(12): 2051-2058.
CrossRef Google scholar
[23]
Kim MR, Yang WK, Grzesik W. Inhibition of osteoclast formation by putative human cementoblasts. Int J Oral Biol, 2008, 33(3): 113-116.
[24]
Xie R, Kuijpers-Jagtman AM, Maltha JC. Osteoclast differentiation during experimental tooth movement by a short-term force application: an immunohistochemical study in rats. Acta Odontol Scand, 2008, 66(5): 314-320.
CrossRef Google scholar
[25]
Yamaguchi M. RANK/RANKL/OPG during orthodontic tooth movement. Orthod Craniofac Res, 2009, 12(2): 113-119.
CrossRef Google scholar
[26]
Gartner LP, Hiatt JL, Strum JM . BRS cell biology and histology. 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2011: 91–108.
[27]
Schoppet M, Preissner KT, Hofbauer LC. RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol, 2002, 22(4): 549-553.
CrossRef Google scholar
[28]
de Vries TJ, Schoenmaker T, Wattanaroonwong N. Gingival fibroblasts are better at inhibiting osteoclast formation than periodontal ligament fibroblasts. J Cell Biochem, 2006, 98(2): 370-382.
CrossRef Google scholar
[29]
Tumber A, Papaioannou S, Breckon J. The effects of serine proteinase inhibitors on bone resorption in vitro. J Endocrinol, 2003, 178(3): 437-447.
CrossRef Google scholar
[30]
Jeganathan S, Fiorino C, Naik U. Modulation of osteoclastogenesis with macrophage M1- and M2-inducing stimuli. PLoS One, 2014, 9(8): e104498.
CrossRef Google scholar
[31]
Diercke K, Kohl A, Lux CJ. IL-1beta and compressive forces lead to a significant induction of RANKL-expression in primary human cementoblasts. J Orofac Orthop, 2012, 73(5): 397-412.
CrossRef Google scholar
[32]
Diercke K, Konig A, Kohl A. Human primary cementoblasts respond to combined IL-1beta stimulation and compression with an impaired BSP and CEMP-1 expression. Eur J Cell Biol, 2012, 91(5): 402-412.
CrossRef Google scholar
[33]
Nemoto E, Darveau RP, Foster BL. Regulation of cementoblast function by P. gingivalis lipopolysaccharide via TLR2. J Dent Res, 2006, 85(8): 733-738.
CrossRef Google scholar
[34]
Bloemen V, Schoenmaker T, de Vries TJ. Direct cell-cell contact between periodontal ligament fibroblasts and osteoclast precursors synergistically increases the expression of genes related to osteoclastogenesis. J Cell Physiol, 2010, 222(3): 565-573.
[35]
Sasaki T. Differentiation and functions of osteoclasts and odontoclasts in mineralized tissue resorption. Microsc Res Tech, 2003, 61(6): 483-495.
CrossRef Google scholar

2

Accesses

55

Citations

1

Altmetric

Detail

Sections
Recommended

/