Strategies for combating bacterial biofilm infections

Hong Wu , Claus Moser , Heng-Zhuang Wang , Niels Høiby , Zhi-Jun Song

International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (1) : 1 -7.

PDF
International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (1) :1 -7. DOI: 10.1038/ijos.2014.65
Article

Strategies for combating bacterial biofilm infections

Author information +
History +
PDF

Abstract

Antibiotics alone are often ineffective in the treatment of bacterial biofilm infections and new strategies are needed. Once bacteria shift from their free-swimming state to the structured community of a biofilm, they become much harder to kill with conventional antibiotic regimens. A review by Zhi-Jun Song and colleagues at Denmark’s University Hospital of Copenhagen explores the challenges of diagnosing and eliminating biofilms that form on the surface of implanted medical devices. At present, the best solution is early detection followed by aggressive treatment with multiple antibiotics and removal of the device in question. However, recent research suggests other possible solutions, including drugs that interfere with communication between bacteria or disrupt their ability to anchor to surfaces, and viruses that specifically infect and kill biofilm-forming microbes.

Keywords

antibiotic resistance / antimicrobial treatments / bacterial biofilm / chronic infection

Cite this article

Download citation ▾
Hong Wu, Claus Moser, Heng-Zhuang Wang, Niels Høiby, Zhi-Jun Song. Strategies for combating bacterial biofilm infections. International Journal of Oral Science, 2014, 6(1): 1-7 DOI:10.1038/ijos.2014.65

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

de Fuente-Núñez C, Reffuveille F, Fernandez L. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol, 2013, 16(5): 580-589.

[2]

Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol, 2004, 2(2): 95-108.

[3]

Yang L, Liu Y, Wu H. Combating biofilms. FEMS Immunol Med Microbiol, 2012, 65(2): 146-157.

[4]

Høiby N, Ciofu O, Johansen HK. The clinical impact of bacterial biofilms. Int J Oral Sci, 2011, 3(2): 55-65.

[5]

Hengzhuang W, Wu H, Ciofu O. Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother, 2011, 55(9): 4469-4474.

[6]

Hengzhuang W, Wu H, Ciofu O. In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother, 2012, 56(5): 2683-2690.

[7]

Høiby N, Bjarnsholt T, Givskov M. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents, 2010, 35(4): 322-332.

[8]

Høiby N. Recent advances in the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. BMC Med, 2011, 9: 32.

[9]

Tran PL, Lowry N, Campbell T. An organoselenium compound inhibits Staphylococcus aureus biofilms on hemodialysis catheters in vivo. Antimicrob Agents Chemother, 2012, 56(2): 972-978.

[10]

Tollefson DF, Bandyk DF, Kaebnick HW. Surface biofilm disruption. Enhanced recovery of microorganisms from vascular prostheses. Arch Surg, 1987, 122(1): 38-43.

[11]

Fux CA, Quigley M, Worel AM. Biofilm-related infections of cerebrospinal fluid shunts. Clin Microbiol Infect, 2006, 12(4): 331-337.

[12]

Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis, 2001, 7(2): 277-281.

[13]

Song Z, Borgwardt L, Høiby N. Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms. Orthop Rev (Pavia), 2013, 5(2): 65-71.

[14]

Santos AP, Watanabe E, Andrade D. Biofilm on artificial pacemaker: fiction or reality. Arq Bras Cardiol, 2011, 97(5): e113-e120.

[15]

Dasgupta MK. Biofilms and infection in dialysis patients. Semin Dial, 2002, 15(5): 338-346.

[16]

Auler ME, Morreira D, Rodrigues FF. Biofilm formation on intrauterine devices in patients with recurrent vulvovaginal candidiasis. Med Mycol, 2010, 48(1): 211-216.

[17]

Donelli G, Vuotto C, Cardines R. Biofilm-growing intestinal anaerobic bacteria. FEMS Immunol Med Microbiol, 2012, 65(2): 318-325.

[18]

Murakami M, Nishi Y, Seto K et al. Dry mouth and denture plaque microflora in complete denture and palatal obturator prosthesis wearers. Gerodontology 2013; doi: 10.1111/ger.12073.

[19]

Rieger UM, Mesina J, Kalbermatten DF. Bacterial biofilms and capsular contracture in patients with breast implants. Br J Surg, 2013, 100(6): 768-774.

[20]

Abidi SH, Sherwani SK, Siddiqui TR. Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmol, 2013, 13: 57.

[21]

Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol, 2010, 5(11): 1663-1674.

[22]

Martinez-Solano L, Macia MD, Fajardo A. Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. Clin Infect Dis, 2008, 47(12): 1526-1533.

[23]

Wessman M, Bjarnsholt T, Eickhardt-Sorensen SR et al. Mucosal biofilm detection in chronic otitis media: a study of middle ear biopsies from Greenlandic patients. Eur Arch Otorhinolaryngol 2014; doi: 10.1007/s00405-014-2886-9.

[24]

Jain R, Douglas R. When and how should we treat biofilms in chronic sinusitis. Curr Opin Otolaryngol Head Neck Surg, 2014, 22(1): 16-21.

[25]

Percival SL, Hill KE, Williams DW. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen, 2012, 20(5): 647-657.

[26]

Malic S, Hill KE, Hayes A. Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology, 2009, 155(Pt 8): 2603-2611.

[27]

Paredes J, Onso-Arce M, Schmidt C. Smart central venous port for early detection of bacterial biofilm related infections. Biomed Microdevices, 2014, 16(3): 365-374.

[28]

Jost GF, Wasner M, Taub E. Sonication of catheter tips for improved detection of microorganisms on external ventricular drains and ventriculo-peritoneal shunts. J Clin Neurosci, 2013, 21(4): 578-582.

[29]

Portillo ME, Salvado M, Trampuz A. Sonication versus vortexing of implants for diagnosis of prosthetic joint infection. J Clin Microbiol, 2013, 51(2): 591-594.

[30]

Guembe M, Marin M, Martin-Rabadan P. Use of universal 16S rRNA gene PCR as a diagnostic tool for venous access port-related bloodstream infections. J Clin Microbiol, 2013, 51(3): 799-804.

[31]

Khot PD, Ko DL, Fredricks DN. Sequencing and analysis of fungal rRNA operons for development of broad-range fungal PCR assays. Appl Environ Microbiol, 2009, 75(6): 1559-1565.

[32]

Bjarnsholt T, Nielsen XC, Johansen U. Methods to classify bacterial pathogens in cystic fibrosis. Methods Mol Biol, 2011, 742: 143-171.

[33]

Rickerts V, Khot PD, Myerson D. Comparison of quantitative real time PCR with Sequencing and ribosomal RNA-FISH for the identification of fungi in formalin fixed, paraffin-embedded tissue specimens. BMC Infect Dis, 2011, 11: 202.

[34]

Zimmerli W, Waldvogel FA, Vaudaux P. Pathogenesis of foreign body infection: description and characteristics of an animal model. J Infect Dis, 1982, 146(4): 487-497.

[35]

Zimmerli W, Lew PD, Waldvogel FA. Pathogenesis of foreign body infection. Evidence for a local granulocyte defect. J Clin Invest, 1984, 73(4): 1191-1200.

[36]

Raad II, Hanna HA. Intravascular catheter-related infections: new horizons and recent advances. Arch Intern Med, 2002, 162(8): 871-878.

[37]

Mermel LA, Allon M, Bouza E. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis, 2009, 49(1): 1-45.

[38]

Fernandez-Hidalgo N, Almirante B. Antibiotic-lock therapy: a clinical viewpoint. Expert Rev Anti Infect Ther, 2014, 12(1): 117-129.

[39]

Vandenhende MA, Buret J, Camou F. Successful daptomycin lock therapy for implantable intra-arterial catheter infection in a patient with liver metastases of colon cancer. Diagn Microbiol Infect Dis, 2014, 78(4): 497-498.

[40]

Tan M, Lau J, Guglielmo BJ. Ethanol locks in the prevention and treatment of catheter-related bloodstream infections. Ann Pharmacother, 2014, 48(5): 607-615.

[41]

Madsen M, Rosthoj S. Impact of hydrochloric acid instillation on salvage of infected central venous catheters in children with acute lymphoblastic leukaemia. Scand J Infect Dis, 2013, 45(1): 38-44.

[42]

Zimmerli W, Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol, 2012, 65(2): 158-168.

[43]

Mocchegiani R, Nataloni M. Complications of infective endocarditis. Cardiovasc Hematol Disord Drug Targets, 2009, 9(4): 240-248.

[44]

Nataloni M, Pergolini M, Rescigno G. Prosthetic valve endocarditis. J Cardiovasc Med (Hagerstown), 2010, 11(12): 869-883.

[45]

May JG, Shah P, Sachdeva L. Potential role of biofilms in deep cervical abscess. Int J Pediatr Otorhinolaryngol, 2014, 78(1): 10-13.

[46]

Høiby N, Krogh JH, Moser C. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect, 2001, 3(1): 23-35.

[47]

Laub R, Schneider YJ, Trouet A. Antibiotic susceptibility of Salmonella spp. at different pH values. J Gen Microbiol, 1989, 135(6): 1407-1416.

[48]

Herrmann G, Yang L, Wu H. Colistin–tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J Infect Dis, 2010, 202(10): 1585-1592.

[49]

Song Z, Wu H, Mygind P. Effects of intratracheal administration of novispirin G10 on a rat model of mucoid Pseudomonas aeruginosa lung infection. Antimicrob Agents Chemother, 2005, 49(9): 3868-3874.

[50]

Ceri H, Olson ME, Stremick C. The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol, 1999, 37(6): 1771-1776.

[51]

Moskowitz SM, Foster JM, Emerson J. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol, 2004, 42(5): 1915-1922.

[52]

DeRyke CA, Lee SY, Kuti JL. Optimising dosing strategies of antibacterials utilising pharmacodynamic principles: impact on the development of resistance. Drugs, 2006, 66(1): 1-14.

[53]

Neu HC. The crisis in antibiotic resistance. Science, 1992, 257(5073): 1064-1073.

[54]

Hengzhuang W, Ciofu O, Yang L. High beta-lactamase levels change the pharmacodynamics of beta-lactam antibiotics in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother, 2013, 57(1): 196-204.

[55]

Dubern JF, Diggle SP. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst, 2008, 4(9): 882-888.

[56]

Kalia D, Merey G, Nakayama S. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev, 2013, 42(1): 305-341.

[57]

Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol, 2009, 7(4): 263-273.

[58]

Romling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev, 2013, 77(1): 1-52.

[59]

Romero D, Aguilar C, Losick R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A, 2010, 107(5): 2230-2234.

[60]

Wu H, Song Z, Hentzer M. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother, 2004, 53(6): 1054-1061.

[61]

O′Loughlin CT, Miller LC, Siryaporn A. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A, 2013, 110(44): 17981-17986.

[62]

Cevizci R, Duzlu M, Dundar Y et al. Preliminary results of a novel quorum sensing inhibitor against pneumococcal infection and biofilm formation with special interest to otitis media and cochlear implantation. Eur Arch Otorhinolaryngol 2014. doi: 10.1007/s00405-014-2942-5. [Epub ahead of print].

[63]

Cirioni O, Mocchegiani F, Cacciatore I. Quorum sensing inhibitor FS3-coated vascular graft enhances daptomycin efficacy in a rat model of staphylococcal infection 2. Peptides, 2013, 40: 77-81.

[64]

Balaban N, Cirioni O, Giacometti A. Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP. Antimicrob Agents Chemother, 2007, 51(6): 2226-2229.

[65]

LoVetri K, Madhyastha S. Antimicrobial and antibiofilm activity of quorum sensing peptides and Peptide analogues against oral biofilm bacteria. Methods Mol Biol, 2010, 618: 383-392.

[66]

Bjarnsholt T, Jensen PO, Rasmussen TB. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology, 2005, 151(Pt 12): 3873-3880.

[67]

Hoffmann N, Lee B, Hentzer M. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr−/− mice. Antimicrob Agents Chemother, 2007, 51(10): 3677-3687.

[68]

Song Z, Kong KF, Wu H. Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection. Phytomedicine, 2010, 17(13): 1040-1046.

[69]

Wu H, Song Z, Givskov M. Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology, 2001, 147(Pt 5): 1105-1113.

[70]

Brackman G, Cos P, Maes L. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother, 2011, 55(6): 2655-2661.

[71]

Sambanthamoorthy K, Luo C, Pattabiraman N. Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling, 2014, 30(1): 17-28.

[72]

Lieberman OJ, Orr MW, Wang Y. High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases. ACS Chem Biol, 2014, 9(1): 183-192.

[73]

Wu H, Lee B, Yang L. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation. FEMS Immunol Med Microbiol, 2011, 62(1): 49-56.

[74]

Connolly KL, Roberts AL, Holder RC. Dispersal of Group A streptococcal biofilms by the cysteine protease SpeB leads to increased disease severity in a murine model. PLoS One, 2011, 6(4): e18984.

[75]

Park JH, Lee JH, Cho MH. Acceleration of protease effect on Staphylococcus aureus biofilm dispersal. FEMS Microbiol Lett, 2012, 335(1): 31-38.

[76]

Cegelski L, Pinkner JS, Hammer ND. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol, 2009, 5(12): 913-919.

[77]

Romero D, Sanabria-Valentin E, Vlamakis H. Biofilm inhibitors that target amyloid proteins. Chem Biol, 2013, 20(1): 102-110.

[78]

Sintim HO, Smith JA, Wang J. Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med Chem, 2010, 2(6): 1005-1035.

[79]

Soothill J. Use of bacteriophages in the treatment of Pseudomonas aeruginosa infections. Expert Rev Anti Infect Ther, 2013, 11(9): 909-915.

[80]

Burrowes B, Harper DR, Anderson J. Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert Rev Anti Infect Ther, 2011, 9(9): 775-785.

[81]

Seth AK, Geringer MR, Nguyen KT. Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care. Plast Reconstr Surg, 2013, 131(2): 225-234.

[82]

Yilmaz C, Colak M, Yilmaz BC. Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am, 2013, 95(2): 117-125.

[83]

Alemayehu D, Casey PG, McAuliffe O. Bacteriophages phiMR299-2 and phiNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. MBio, 2012, 3(2): e00029-12.

[84]

Brussow H. Bacteriophage–host interaction: from splendid isolation into a messy reality. Curr Opin Microbiol, 2013, 16(4): 500-506.

[85]

Singh PK, Parsek MR, Greenberg EP. A component of innate immunity prevents bacterial biofilm development. Nature, 2002, 417(6888): 552-555.

[86]

Iwase T, Uehara Y, Shinji H. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature, 2010, 465(7296): 346-349.

[87]

He N, Hu J, Liu H. Enhancement of vancomycin activity against biofilms by using ultrasound-targeted microbubble destruction. Antimicrob Agents Chemother, 2011, 55(11): 5331-5337.

[88]

Hoen B, Duval X. Clinical practice. Infective endocarditis. N Engl J Med, 2013, 368(15): 1425-1433.

[89]

Baddour LM, Wilson WR, Bayer AS. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation, 2005, 111(23): e394-e434.

[90]

Smith RN, Nolan JP. Central venous catheters. BMJ, 2013, 347: f6570.

AI Summary AI Mindmap
PDF

370

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/