Electrochemical deposition of Nd and Nd–Fe alloy from Cu6Nd alloy in a NaCl–KCl–NdCl3 melt

Chen-teng Sun , Qian Xu , Yan-ping Xiao , Yong-xiang Yang

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (12) : 1650 -1656.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (12) : 1650 -1656. DOI: 10.1007/s12613-020-2130-0
Article

Electrochemical deposition of Nd and Nd–Fe alloy from Cu6Nd alloy in a NaCl–KCl–NdCl3 melt

Author information +
History +
PDF

Abstract

Electrorefining effectively separates metals from their corresponding alloys. To obtain Nd from Cu6Nd alloy, cyclic voltammetry and square wave voltammetry were used to investigate the reduction behavior of Nd3+ and the anode dissolution behavior of Cu6Nd in the NaCl–KCl–0.5mol%NdCl3 melt at 1023 K. According to the analysis of the electrochemical behavior, the cell voltage was determined to be between 0.3 and 1.2 V for separating Nd from Cu6Nd. After electrolysis at 0.6 V for 4 h, the Nd was found at the surface of the Mo cathode without any Cu. For the Fe cathode, a deposition with an atom ratio of Nd: Fe = 1:1 was formed on the surface. However, the low current density of separation remains a great experimental challenge that must be solved.

Keywords

Cu6Nd alloy / molten salt / electrochemical separation / NaCl–KCl–NdCl3

Cite this article

Download citation ▾
Chen-teng Sun, Qian Xu, Yan-ping Xiao, Yong-xiang Yang. Electrochemical deposition of Nd and Nd–Fe alloy from Cu6Nd alloy in a NaCl–KCl–NdCl3 melt. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(12): 1650-1656 DOI:10.1007/s12613-020-2130-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yasuda K, Kobayashi S, Nohira T, Hagiwara R. Electrochemical formation of Dy–Ni alloys in molten NaCl–KCl–DyCl3. Electrochim. Acta, 2013, 106, 293.

[2]

A. Schreiber, J. Marx, P. Zapp, and W. Kuckshinrichs, Comparative life cycle assessment of neodymium oxide electrolysis in molten salt, Adv. Eng. Mater., 22(2020), No. 6, art. No. 1901206.

[3]

J.A. De Castro, D. Rodrigues, and M.F. De Campos, From neo-dymium oxide to NdFeB alloy: An overview on the reduction methods, [in] REPM 2014 — 23rd International Workshop on Rare Earth and Future Permanent Magnets and Their Applications, Annapolis, 2014, p. 358.

[4]

Singh S, Juneja JM, Bose DK. Preparation of neodymium-iron alloys by electrolysis in a fused chloride bath. J. Appl. Electrochem., 1995, 25, 1139.

[5]

Sharma RA. Neodymium production processes. JOM, 1987, 39(2): 33.

[6]

Sharma RA, Seefurth RN. Metallothermic reduction of Nd2O3 with Ca in CaCl2–NaCl melts. J. Electrochem. Soc., 1988, 135(1): 66.

[7]

Guo XL, Sun Z, Sietsma J, Blanpain B, Guo MX, Yang YX. Quantitative study on dissolution behavior of Nd2O3 in fluoride melts. Ind. Eng. Chem. Res., 2018, 57(5): 1380.

[8]

Kaneko A, Yamamoto Y, Okada C. Electrochemistry of rare earth fluoride molten salts. J. Alloys Compd., 1993, 193(1–2): 44.

[9]

Ødegård IA, Tranell GM. Formation of copper–neodymium intermetallic compounds by carbothermic reduction of neodymium oxide in the presence of copper. Ind. Eng. Chem. Res., 2018, 57(40): 13566.

[10]

Kinoshita K, Koyama T, Inoue T, Ougier M, Glatz J-P. Separation of actinides from rare earth elements by means of molten salt electrorefining with anodic dissolution of U–Pu–Zr alloy fuel. J. Phys. Chem. Solids, 2005, 66(2–4): 619.

[11]

Meier R, Soucek P, Malmbeck R, Krachler M, Rodrigues A, Claux B, Glatz J-P, Fanghänel Th. Zirconium behaviour during electrorefining of actinide–zirconium alloy in molten LiCl–KCl on aluminium cathodes. J. Nucl. Mater., 2016, 472, 99.

[12]

Kato T, Inoue T, Iwai T, Arai Y. Separation behaviors of actinides from rare-earths in molten salt electrorefining using saturated liquid cadmium cathode. J. Nucl. Mater., 2006, 357(1–3): 105.

[13]

Smolenski V, Novoselova A, Osipenko A, Kormilitsyn M, Luk’yanova Y. Thermodynamics of separation of uranium from neodymium between the gallium–indium liquid alloy and the LiCl–KCl molten salt phases. Electrochim. Acta, 2014, 133, 354.

[14]

Novoselova A, Smolenski V. Electrochemical behavior of neodymium compounds in molten chlorides. Electrochim. Acta, 2013, 87, 657.

[15]

Taylor MD, Carter CP. Preparation of anhydrous lanthanide halide, sespecially iodides. J. Inorg. Nucl. Chem., 1962, 24(4): 387.

[16]

Yasuda K, Kobayashi S, Nohira T, Hagiwara R. Electrochemical formation of Nd-Ni alloys in molten NaCl–KCl–Nd-Cl3. Electrochim. Acta, 2013, 92, 349.

[17]

Jiao HD, Wang JX, Zhang L, Zhang K, Jiao SQ. Electrochemically depositing titanium(III) ions at liquid tin in a NaCl–KCl melt. RSC Adv., 2015, 5(76): 62235.

[18]

Hua ZS, Liu H, Wang J, He JW, Xiao SJ, Xiao YP, Yang YX. Electrochemical behavior of neodymium and formation of Mg–Nd alloys in molten chlorides. ACS. Sustainable Chem. Eng., 2017, 5(9): 8089.

[19]

Xu L, Xiao YP, Xu Q, van Sandwijk A, Li JD, Zhao Z, Song QS, Yang YX. Electrochemical behavior of zirconium in molten LiF–KF–ZrF4 at 600°C. RSC Adv., 2016, 6(87): 84472.

[20]

Chen Z, She CF, Zheng HY, Huang W, Zhu TJ, Jiang F, Gong Y, Li QN. Electrochemical deposition of neodymium in LiF–CaF2 from Nd2O3 assisted by AlF3. Electrochim. Acta, 2018, 261, 289.

[21]

Chen DH, Yan SH, Li ZA, Wang ZQ, Pang SM, Wang XS, Xu LH. Liquid-cathode cell for neodymium electrolysis in NdF3–LiF–Nd2O3 molten. J. Chin. Rare Earth Soc., 2009, 27(2): 302.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/