Synthesis of dandelion-like TiO2 microspheres as anode materials for lithium ion batteries with enhanced rate capacity and cyclic performances

Jin Yi , Yan-lin Liu , Yuan Wang , Xiao-ping Li , She-jun Hu , Wei-shan Li

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (11) : 1058 -1062.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (11) : 1058 -1062. DOI: 10.1007/s12613-012-0670-7
Article

Synthesis of dandelion-like TiO2 microspheres as anode materials for lithium ion batteries with enhanced rate capacity and cyclic performances

Author information +
History +
PDF

Abstract

Dandelion-like TiO2 microspheres consisting of numerous rutile single-crystalline nanorods were synthesized for the first time by a hydrothermal method. Their crystal structure, morphology and electrochemical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and galvanostatic charge and discharge tests. The results show that the synthesized TiO2 microspheres exhibit good rate and cycle performances as anode materials of lithium ion batteries. It can be found that the dandelion-like structure provides a larger specific surface area and the single-crystalline nanorod provides a stable structure and fast pathways for electron and lithium ion transport, which contribute to the rate and cycle performances of the battery.

Keywords

titanium dioxide / microspheres / nanorods / anodes / lithium batteries

Cite this article

Download citation ▾
Jin Yi, Yan-lin Liu, Yuan Wang, Xiao-ping Li, She-jun Hu, Wei-shan Li. Synthesis of dandelion-like TiO2 microspheres as anode materials for lithium ion batteries with enhanced rate capacity and cyclic performances. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(11): 1058-1062 DOI:10.1007/s12613-012-0670-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu M.Q., Hao L.S., Liu Y.L., Li W.S., Xing L.D., Li B. Experimental and theoretical investigations of dimethylacetamide (DMAc) as electrolyte stabilizing additive for lithium ion batteries. J. Phys. Chem. C, 2011, 115(13): 6085.

[2]

Yi J., Li X.P., Hu S.J., Li W.S., Zhou L., Xu M.Q., Lei J.F., Hao L.S. Preparation of hierarchical porous carbon and its rate performance as anode of lithium ion battery. J. Power Sources, 2011, 196(16): 6670.

[3]

Rao M.M., Liu J.S., Li W.S., Liao Y.H., Liang Y., Zhao L.Z. Polyethylene-supported poly(acrylonitrile-co-methyl methacrylate)/nano-Al2O3 microporous composite polymer electrolyte for lithium ion battery. J. Solid State Electrochem., 2010, 14(2): 255.

[4]

Qui Y.C., Yan K.Y., Yang S.H., Jin L.M., Deng H., Li W.S. Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride-titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. ACS Nano, 2010, 4(11): 6515.

[5]

Yi J., Lu D.S., Li X.P., Hu S.J., Li W.S., Lei J.F., Wang Y. Preparation and performance of porous titania with a trimodal pore system as anode of lithium ion battery. J. Solid State Electrochem., 2012, 16(2): 443.

[6]

Song B., Liu S.W., Jian J.K., Lei M., Wang X.J., Li H., Yu J.G., Chen X.L. Electrochemical properties of TiO2 hollow microspheres from a template-free and green wet-chemical route. J. Power Sources, 2008, 180(2): 869.

[7]

Breckenridge R.G., Hosler W.R. Electrical properties of titanium dioxide semiconductors. Phys. Rev., 1953, 91(4): 793.

[8]

Yang Z.G., Choi D.W., Kerisit S., Rosso K.M., Wang D.H., Zhang J.S., Graff G., Liu J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources, 2009, 192(2): 588.

[9]

Qiao H., Wang Y.W., Xiao L.X., Zhang L.Z. High lithium electroactivity of hierarchical porous rutile TiO2 nanorod microspheres. Electrochem. Commun., 2008, 10(9): 1280.

[10]

Jiang C.H., Honma I., Kudo T., Zhou H.S. Nanocrystalline rutile TiO2 electrode for high-capacity and high-rate lithium storage. Electrochem. Solid State Lett., 2007, 10(5): A127.

[11]

Khomane R.B. Microemulsion-mediated sol-gel synthesis of mesoporous rutile TiO2 nanoneedles and its performance as anode material for Li-ion batteries. J. Colloid Interface Sci., 2011, 356(1): 369.

[12]

Qiao H., Tao D., Wang Y.W., Cai Y.B., Huang F.L., Yang X., Wei J.Z., Wei Q.F. Electrochemical charge storage of flowerlike rutile TiO2 nanorods. Chem. Phys. Lett., 2010, 490(4–6): 180.

[13]

Liu B., Aydil E.S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc., 2009, 131(11): 3985.

[14]

Feng X.J., Shankar K., Varghese O.K., Paulose M., Latempa T.J., Grimes C.A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett., 2008, 8(11): 3781.

[15]

Zhang W.M., Hu J.S., Guo Y.G., Zheng S.F., Zhong L.S., Song W.G., Wan L.J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater., 2008, 20(6): 1160.

[16]

Yu J.C., Li G.S., Wang X.C., Hu X.L., Leung C.W., Zhang Z.D. An ordered cubic Im3m mesoporous Cr-TiO2 visible light photocatalyst. Chem. Commun., 2006, 25(25): 2717.

[17]

Tong T.Z., Zhang J.L., Tian B.Z., Chen F., He D.N. Preparation and characterization of anatase TiO2 microspheres with porous frameworks via controlled hydrolysis of titanium alkoxide followed by hydrothermal treatment. Mater. Lett., 2008, 62(17-18): 2970.

[18]

Hu Y.S., Kienle L., Guo Y.G., Maier J. High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater., 2006, 18(11): 1421.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/