Retrospective and prospective review of the generalized nonlinear strength theory for geomaterials

Shunchuan Wu , Jiaxin Wang , Shihuai Zhang , Shigui Huang , Lei Xia , Qianping Zhao

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (8) : 1767 -1787.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (8) : 1767 -1787. DOI: 10.1007/s12613-024-2929-1
Review

Retrospective and prospective review of the generalized nonlinear strength theory for geomaterials

Author information +
History +
PDF

Abstract

Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil, hydraulic, mechanical, aerospace, military, and other engineering disciplines. Therefore, the comprehensive study of the generalized nonlinear strength theory (GNST) of geomaterials has significance for the construction of engineering rock strength. This paper reviews the GNST of geomaterials to demonstrate the research status of nonlinear strength characteristics of geomaterials under complex stress paths. First, it systematically summarizes the research progress of GNST (classical and empirical criteria). Then, the latest research the authors conducted over the past five years on the GNST is introduced, and a generalized three-dimensional (3D) nonlinear Hoek–Brown (HB) criterion (NGHB criterion) is proposed for practical applications. This criterion can be degenerated into the existing three modified HB criteria and has a better prediction performance. The strength prediction errors for six rocks and two in-situ rock masses are 2.0724%–3.5091% and 1.0144%–3.2321%, respectively. Finally, the development and outlook of the GNST are expounded, and a new topic about the building strength index of rock mass and determining the strength of in-situ engineering rock mass is proposed. The summarization of the GNST provides theoretical traceability and optimization for constructing in-situ engineering rock mass strength.

Keywords

rock mechanics / rock mass strength / strength theory / failure criterion / Hoek–Brown criterion / intermediate principal stress / deviatoric plane / smoothness and convexity

Cite this article

Download citation ▾
Shunchuan Wu, Jiaxin Wang, Shihuai Zhang, Shigui Huang, Lei Xia, Qianping Zhao. Retrospective and prospective review of the generalized nonlinear strength theory for geomaterials. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(8): 1767-1787 DOI:10.1007/s12613-024-2929-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu SC, Li LP, Zhang XP. Rock Mechanics, 2021, Beijing, Higher Education Press.

[2]

F.X. Ding, X. Wu, X.M. Zhang, et al., Reviews on research progress of strength theories for materials, J. Railway Sci. Eng., (2024). DOI: https://doi.org/10.19713/j.cnki.43-1423/u.T20240158

[3]

Guo QF, Xi X, Yang ST, Cai MF. Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines. Int. J. Miner. Metall. Mater., 2022, 29(4): 626.

[4]

Yu MH. Advances in strength theories for materials under complex stress state in the 20th century. Appl. Mech. Rev., 2002, 55(3): 169.

[5]

Yu MH, Yoshimine M, Qiang HF, et al. Advances and prospects for strength theory. Eng. Mech., 2004, 21(6): 1.

[6]

Zhu HH, Zhang Q, Zhang LY. Review of research progresses and applications of Hoek–Brown strength criterion. Chin. J. Rock Mech. Eng., 2013, 32(10): 1945.

[7]

H.T. Liu, Z. Han, Z.J. Han, et al., Nonlinear empirical failure criterion for rocks under triaxial compression, Int. J. Min. Sci. Technol., (2024). DOI: https://doi.org/10.1016/j.ijmst.2024.03.002

[8]

Zhang D, Liu EL, Liu XY, Zhang G, Song BT. A new strength criterion for frozen soils considering the influence of temperature and coarse-grained contents. Cold Reg. Sci. Technol., 2017, 143, 1.

[9]

Asadi M, Bagheripour MH. Modified criteria for sliding and non-sliding failure of anisotropic jointed rocks. Int. J. Rock Mech. Min. Sci., 2015, 73, 95.

[10]

Pei JY, Einstein HH, Whittle AJ. The normal stress space and its application to constructing a new failure criterion for cross-anisotropic geomaterials. Int. J. Rock Mech. Min. Sci., 2018, 106, 364.

[11]

Zheng YN, Zhang Q, Zhang S, Jia CJ, Lei MF. Yield criterion research on intact rock transverse isotropy based on Hoek–Brown criterion. Rock Soil Mech., 2022, 43(1): 139.

[12]

J.Y. Liang, C. Ma, Y.H. Su, D.C. Lu, and X.L. Du, A failure criterion incorporating the effect of depositional angle for transversely isotropic soils, Comput. Geotech., 148(2022), art. No. 104812.

[13]

Lai XP, Shan PF, Cai MF, Ren FH, Tan WH. Comprehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling. Int. J. Miner. Metall. Mater., 2015, 22(1): 1.

[14]

Li XS, Li QH, Wang YM, et al. Experimental study on instability mechanism and critical intensity of rainfall of high-steep rock slopes under unsaturated conditions. Int. J. Min. Sci. Technol., 2023, 33(10): 1243.

[15]

W. Liu, Q.H. Li, C.H. Yang, et al., The role of underground salt caverns for large-scale energy storage: A review and prospects, Energy Storage Mater., 63(2023), art. No. 103045.

[16]

XL, Huang MS, Andrade JE. Strength criterion for cross-anisotropic sand under general stress conditions. Acta Geotech., 2016, 11(6): 1339.

[17]

J.X. Wang, S.C. Wu, H.Y. Cheng, J.L. Sun, X.L. Wang, and Y.X. Shen, A generalized nonlinear three-dimensional Hoek–Brown failure criterion, J. Rock Mech. Geotech. Eng., (2024). DOI: https://doi.org/10.1016/j.jrmge.2023.10.022.

[18]

Nayak GC, Zienkiewicz OC. Convenient form of stress invariants for plasticity. J. Struct. Div., 1972, 98(4): 949.

[19]

Hershey AV. The plasticity of an isotropic aggregate of anisotropic face-centered cubic crystals. J. Appl. Mech., 1954, 21(3): 241.

[20]

Davis EA. The Bailey flow rule and associated yield surface. J. Appl. Mech., 1961, 28(2): 310.

[21]

Hosford WF. A generalized isotropic yield creterion. J. Appl. Mech., 1972, 39(2): 607.

[22]

Barlat F, Lian K. Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. Int. J. Plast., 1989, 5(1): 51.

[23]

Tan JJ. The unified form for yield criteria of metallic materials. Chin. Sci. Bull., 1991, 36(9): 769.

[24]

Karafillis AP, Boyce MC. A general anisotropic yield criterion using bounds and a transformation weighting tensor. J. Mech. Phys. Solids, 1993, 41(12): 1859.

[25]

Owen DRJ, Perić D. Recent developments in the application of finite element methods to nonlinear problems. Finite Elem. Anal. Des., 1994, 18(1–3): 1.

[26]

Bailey RW. The utilization of creep test data in engineering design. Proc. Inst. Mech. Eng., 1935, 131(1): 131.

[27]

Edelman F, Drucker DC. Some extensions of elementary plasticity theory. J. Frankl. Inst., 1951, 251(6): 581.

[28]

Dodd B, Naruse K. Limitations on isotropic yield criteria. Int. J. Mech. Sci., 1989, 31(7): 511.

[29]

Hill R. A user-friendly theory of orthotropic plasticity in sheet metals. Int. J. Mech. Sci., 1993, 35(1): 19.

[30]

Barlat F, Becker RC, Hayashida Y, et al. Yielding description for solution strengthened aluminum alloys. Int. J. Plast., 1997, 13(4): 385.

[31]

Barlat F, Maeda Y, Chung K, et al. Yield function development for aluminum alloy sheets. J. Mech. Phys. Solids., 1997, 45(11–12): 1727.

[32]

Zienkiewicz OC. Gudehus G. Some useful forms of isotropic yield surfaces for soil and rock mechanics. Finite Elements in Geomechanics, 1977, London, John Wiley & Sons Ltd, 179.

[33]

Desai CS. A general basis for yield, failure and potential functions in plasticity. Int. J. Numer. Anal. Methods Geomech., 1980, 4(4): 361.

[34]

de Boer R. On plastic deformation of soils. Int. J. Plast., 1988, 4(4): 371.

[35]

Shen ZJ. A stress–strain model for sands under complex loading. Adv. Constitutive Laws Eng. Mater., 1989, 1, 303.

[36]

Krenk S. Family of invariant stress surface. J. Engrg. Mech., 1996, 122(3): 201.

[37]

Yu MH. Unified Strength Theory and its Applications, 2018, Xi’an, Xi’an Jiaotong University Press

[38]

Aubertin M, Li L, Simon R, Khalfi S. Formulation and application of a short-term strength criterion for isotropic rocks. Can. Geotech. J., 1999, 36, 947.

[39]

Zhou YQ, Sheng Q, Zhu ZQ, Fu XD. Subloading surface model for rock based on modified Drucker–Prager criterion. Rock Soil Mech., 2017, 38(2): 400.

[40]

Zhou FX, Li SR. Generalized Drucker–Prager strength criterion. Key Eng. Mater., 2007, 353–358, 369.

[41]

Zhang D, Liu EL, Liu XY, Song BT. Investigation on strength criterion for frozen silt soils. Rock Soil Mech., 2018, 39(9): 3237.

[42]

Liu XY, Liu EL, Zhang D, Zhang G, Song BT. Study on strength criterion for frozen soil. Cold Reg. Sci. Technol., 2019, 161, 1.

[43]

Yao YP, Hu J, Zhou AN, Luo T, Wang ND. Unified strength criterion for soils, gravels, rocks, and concretes. Acta Geotech., 2015, 10(6): 749.

[44]

Du XL, Lu DC, Gong QM, Zhao M. Nonlinear unified strength criterion for concrete under three-dimensional stress states. J. Eng. Mech., 2010, 136(1): 51.

[45]

Xiao Y, Liu HL, Liang RY. Modified Cam–Clay model incorporating unified nonlinear strength criterion. Sci. China Technol. Sci., 2011, 54(4): 805.

[46]

Liu MC, Gao YF, Liu HL. A nonlinear Drucker–Prager and Matsuoka–Nakai unified failure criterion for geomaterials with separated stress invariants. Int. J. Rock Mech. Min. Sci., 2012, 50, 1.

[47]

Zhang YQ, Bernhardt M, Biscontin G, Luo R, Lytton RL. A generalized Drucker–Prager viscoplastic yield surface model for asphalt concrete. Mater. Struct., 2015, 48(11): 3585.

[48]

Darabi MK, Al-Rub RKA, Masad EA, Huang CW, Little DN. A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures. Int. J. Plast., 2012, 35, 100.

[49]

D. Lu, C.J. Ma, X.L. Du, L. Jin, and Q. Gong, Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept, Int. J. Geomech., 17(2017), art. No. 04016058.

[50]

Wan Z, Qiu RD, Guo JX. A kind of strength and yield criterion for geomaterials and its transformation stress method. Chin. J. Theor. Appl. Mech., 2017, 49(3): 726.

[51]

Wan Z, Liu YY, Cao W, Wang YJ, Xie LY, Fang YF. One kind of transverse isotropic strength criterion and the transformation stress space. Int. J. Numer. Anal. Meth. Geomech., 2022, 46(4): 798.

[52]

Liu BH, Kong LW, Shu RJ, Li TG. Mechanical properties and strength criterion of Zhanjiang structured clay in three-dimensional stress state. Rock Soil Mech., 2021, 42(11): 3090.

[53]

He JL, Niu FJ, Su WJ, Jiang HQ. Nonlinear unified strength criterion for frozen soil based on homogenization theory. Mech. Adv. Mater. Struct., 2023, 30(19): 4002.

[54]

S. Wang, Z. Zhong, B. Chen, X.R. Liu, and B.M. Wu, Developing a three dimensional (3D) elastoplastic constitutive model for soils based on unified nonlinear strength (UNS) criterion, Front. Earth Sci., 10(2022), art. No. 853962.

[55]

Mortara G. A yield criterion for isotropic and cross-anisotropic cohesive-frictional materials. Int. J. Numer. Anal. Methods Geomech., 2010, 34(9): 953.

[56]

Xiao Y, Liu HL, Zhu JG. Failure criterion for granular soils. Chin. J. Geotech. Eng., 2010, 32(4): 586.

[57]

Wan Z, Liu YY. A new generalized failure criterion and its plane strain strength characteristics. Arch. Appl. Mech., 2023, 93(4): 1699.

[58]

Feng XT, Kong R, Yang CX, et al. A three-dimensional failure criterion for hard rocks under true triaxial compression. Rock Mech. Rock Eng., 2020, 53(1): 103.

[59]

Feng XT, Yang CX, Kong R, et al. Excavation-induced deep hard rock fracturing: Methodology and applications. J. Rock Mech. Geotech. Eng., 2022, 14(1): 1.

[60]

Bigoni D, Piccolroaz A. Yield criteria for quasibrittle and frictional materials. Int. J. Solids Struct., 2004, 41(11–12): 2855.

[61]

Mortara G. A new yield and failure criterion for geomaterials. Géotechnique., 2008, 58(2): 125.

[62]

Lade PV. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int. J. Solids Struct., 1977, 13(11): 1019.

[63]

Kim MK, Lade PV. Modeling rock strength in three-dimensions. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1984, 21(1): 21.

[64]

Houlsby GT. A general failure criterion for frictional and cohesive materials. Soils Found., 1986, 26(2): 97.

[65]

Qiu SL, Feng XT, Zhang CQ, Huang SL. Establishment of unified strain energy strength criterion of homogeneous and isotropic hard rocks and its validation. Chin. J. Rock Mech. Eng., 2013, 32(4): 714.

[66]

Aubertin M, Li L, Simon R. A multiaxial stress criterion for short- and long-term strength of isotropic rock media. Int. J. Rock Mech. Min. Sci., 2000, 37(8): 1169.

[67]

Huang SL, Feng XT, Zhang CQ. A new generalized polyaxial strain energy strength criterion of brittle rock and polyaxial test validation. Chin. J. Rock Mech. Eng., 2008, 27(01): 124.

[68]

Wiebols GA, Cook NGW. An energy criterion for the strength of rock in polyaxial compression. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1968, 5(6): 529.

[69]

V.A. Kolupaev, Generalized strength criteria as functions of the stress angle, J. Eng. Mech., 143(2017), No. 9, art. No. 04017095.

[70]

Rosendahl PL, Kolupaev VA, Altenbach H. Altenbach H, Öchsner A. Extreme yield figures for universal strength criteria. State of the Art and Future Trends in Material Modeling, 2019, Cham, Springer, 259.

[71]

Ehlers W. A single-surface yield function for geomaterials. Arch. Appl. Mech., 1995, 65(4): 246.

[72]

Li ZZ, Tang XW. Deduction and verification of a new strength criterion for soils. Rock Soil Mech., 2007, 28(6): 1247.

[73]

Shi WC, Zhu JG, Liu HL. Influence of intermediate principal stress on deformation and strength of gravel. Chin. J. Geotech. Eng., 2008, 30(10): 1449.

[74]

Liang JY, Li YM. A failure criterion considering stress angle effect. Rock Mech. Rock Eng., 2019, 52(4): 1257.

[75]

Zheng MZ, Li SJ. A non-linear three-dimensional failure criterion based on stress tensor distance. Rock Mech. Rock Eng., 2022, 55, 6741.

[76]

X.S. Gao, M. Wang, C. Li, M.M. Zhang, and Z.H. Li, A new three-dimensional rock strength criterion based on shape function in deviatoric plane, Geomech. Geophys. Geo Energy Geo Resour., 10(2024), No. 1, art. No. 7.

[77]

Mortara G. A hierarchical single yield surface for frictional materials. Comput. Geotech., 2009, 36(6): 960.

[78]

Jiang JQ, Xu RQ, Yu JL, Qiu ZJ, Qin JS, Zhan XB. A practical constitutive theory based on egg-shaped function in elasto-plastic modeling for soft clay. J. Cent. South Univ., 2020, 27(8): 2424.

[79]

J.C. Liu, X. Li, Y. Xu, and K.W. Xia, A three-dimensional nonlinear strength criterion for rocks considering both brittle and ductile domains, Rock Mech. Rock Eng., (2024). DOI: https://doi.org/10.1007/s00603-024-03823-8

[80]

Ma XD, Rudnicki JW, Haimson BC. The application of a Matsuoka–Nakai–Lade–Duncan failure criterion to two porous sandstones. Int. J. Rock Mech. Min. Sci., 2017, 92, 9.

[81]

H.H. Chen, C.Y. Yang, J.P. Li, and D.A. Sun, A general method to incorporate three-dimensional cross-anisotropy to failure criterion of geomaterial, Int. J. Geomech., 21(2021), No. 12, art. No. 04021241.

[82]

F. Zhou and H. Wu, A novel three-dimensional modified Griffith failure criterion for concrete, Eng. Fract. Mech., 284(2023), art. No. 109287.

[83]

Jiang H. Simple three-dimensional Mohr–Coulomb criteria for intact rocks. Int. J. Rock Mech. Min. Sci., 2018, 105, 145.

[84]

Jiang H. Failure criteria for cohesive-frictional materials based on Mohr–Coulomb failure function. Int. J. Numer. Anal. Meth. Geomech., 2015, 39(13): 1471.

[85]

Li HZ, Xu JT, Zhang ZL, Song L. A generalized unified strength theory for rocks. Rock Mech. Rock Eng., 2023, 56(11): 7759.

[86]

Murrell SAF. The effect of triaxial stress system on the strength of rocks at atmospheric Temperatures. Geophys. J. Int., 1965, 10(3): 231.

[87]

Bieniawski ZT. Estimating the strength of rock materials. J. S. Afr. Inst. Min. Metall., 1974, 74(8): 312.

[88]

Y. Yudhbir, W. Lemanza, and F. Prinzl, An empirical failure criterion for rock masses, [in] The 5th ISRM Congress, Melbourne, Australia, 1983.

[89]

Sheorey PR, Biswas AK, Choubey VD. An empirical failure criterion for rocks and jointed rock masses. Eng. Geol., 1989, 26(2): 141.

[90]

Hobbs D. The tensile strength of rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1964, 1, 385.

[91]

Ramamurthy T, Arora VK. Strength predictions for jointed rock in confined and unconfined states. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1994, 31(1): 9.

[92]

Franklin JA. Triaxial strength of rock materials. Rock Mech., 1971, 3(2): 86.

[93]

Hoek E, Brown ET. Empirical strength criterion for rock masses. J. Geotech. Engrg. Div., 1980, 106(9): 1013.

[94]

Yoshida N, Morgenstern NR, Chan DH. A failure criterion for stiff soils and rocks exhibiting softening. Can. Geotech. J., 1990, 27(2): 195.

[95]

Brown ET, Hoek E. Underground Excavations in Rock, 1980, London, CRC Press

[96]

A.A. Griffith, Theory of rupture, [in] Proceedings of the 1st International Congress on Applied Mechanics, Delft, 1924, p. 55.

[97]

Hoek E. Strength of rock and rock masses. ISRM News J., 1994, 2(2): 4.

[98]

Hoek E, Kaiser PK, Bawden WF. Support of Underground Excavations in Hard Rock, 2000, Florida, CRC Press

[99]

Hoek E, Brown ET. The Hoek–Brown failure criterion and GSI–2018 edition. J. Rock Mech. Geotech. Eng., 2019, 11(3): 445.

[100]

Feng XT, Zhang JY, Yang CX, et al. A novel true triaxial test system for microwave-induced fracturing of hard rocks. J. Rock Mech. Geotech. Eng., 2021, 13(5): 961.

[101]

Feng XT, Tian M, Yang CX, He BG. A testing system to understand rock fracturing processes induced by different dynamic disturbances under true triaxial compression. J. Rock Mech. Geotech. Eng., 2023, 15(1): 102.

[102]

C. Zhu, M. Karakus, M.C. He, et al., Volumetric deformation and damage evolution of Tibet interbedded skarn under multistage constant–amplitude–cyclic loading, Int. J. Rock Mech. Min. Sci., 152(2022), art. No. 105066.

[103]

Lee YK, Pietruszczak S, Choi BH. Failure criteria for rocks based on smooth approximations to Mohr–Coulomb and Hoek–Brown failure functions. Int. J. Rock Mech. Min. Sci., 2012, 56, 146.

[104]

Zhang Q, Zhu HH, Zhang LY. Modification of a generalized three-dimensional Hoek–Brown strength criterion. Int. J. Rock Mech. Min. Sci., 2013, 59, 80.

[105]

Yang YG, Gao F, Lai YM. Modified Hoek–Brown criterion for nonlinear strength of frozen soil. Cold Reg. Sci. Technol., 2013, 86, 98.

[106]

Li BX. Research on Failure Mechanism and 3-D Strength Criterion of Hard Rock in Deep Ground Engineering, 2022, Shandong, Shandong University [Dissertation]

[107]

X.D. Pan and J.A. Hudson, A simplified three dimensional Hoek–Brown yield criterion, [in] ISRM International Symposium, Madrid,1988.

[108]

Zhang LY, Zhu HH. Three-dimensional Hoek–Brown strength criterion for rocks. J. Geotech. Geoenviron. Eng., 2007, 133(9): 1128.

[109]

Zhang L. A generalized three-dimensional Hoek–Brown strength criterion. Rock Mech. Rock Eng., 2008, 41(6): 893.

[110]

Jiang H, Wang XW, Xie YL. New strength criteria for rocks under polyaxial compression. Can. Geotech. J., 2011, 48(8): 1233.

[111]

Jiang H, Xie YL. A new three-dimensional Hoek–Brown strength criterion. Acta Mech. Sin., 2012, 28(2): 393.

[112]

Jiang H, Zhao JD. A simple three-dimensional failure criterion for rocks based on the Hoek–Brown criterion. Rock Mech. Rock Eng., 2015, 48(5): 1807.

[113]

Jiang H. A failure criterion for rocks and concrete based on the Hoek–Brown criterion. Int. J. Rock Mech. Min. Sci., 2017, 95, 62.

[114]

H. Jiang, Three-dimensional failure criteria for rocks based on the Hoek–Brown criterion and a general lode dependence, Int. J. Geomech., 27(2017), No. 8, art. No. 04017023.

[115]

Cai WQ, Zhu HH, Liang WH, Zhang LY, Wu W. A new version of the generalized Zhang–Zhu strength criterion and a discussion on its smoothness and convexity. Rock Mech. Rock Eng., 2021, 54(8): 4265.

[116]

W.Q. Cai, H.H. Zhu, and W.H. Liang, Three-dimensional tunnel face extrusion and reinforcement effects of underground excavations in deep rock masses, Int. J. Rock Mech. Min. Sci., 150(2022), art. No. 104999.

[117]

W.Q. Cai, H.H. Zhu, and W.H. Liang, Three-dimensional stress rotation and control mechanism of deep tunneling incorporating generalized Zhang–Zhu strength-based forward analysis, Eng. Geol., 308(2022), art. No. 106806.

[118]

W.Q. Cai, C.L. Su, H.H. Zhu, et al., Elastic-plastic response of a deep tunnel excavated in 3D Hoek–Brown rock mass considering different approaches for obtaining the out-of-plane stress, Int. J. Rock Mech. Min. Sci., 169(2023), art. No. 105425.

[119]

Chen HH, Zhu HH, Zhang LY. A unified constitutive model for rock based on newly modified GZZ criterion. Rock Mech. Rock Eng., 2021, 54(2): 921.

[120]

Chen H, Zhu H, Zhang L. Further modification of a generalised 3D Hoek–Brown criterion: the GZZ criterion. Géotech. Lett., 2022, 12(4): 272.

[121]

Single B, Goel RK, Mehrotra VK, Garg SK, Allu MR. Effect of intermediate principal stress on strength of anisotropic rock mass. Tunn. Undergr. Space Technol., 1998, 13(1): 71.

[122]

Priest S. Three-dimensional failure criteria based on the Hoek–Brown criterion. Rock Mech. Rock Eng., 2012, 45, 989.

[123]

Li HZ, Guo T, Nan YL, Han B. A simplified three-dimensional extension of Hoek–Brown strength criterion. J. Rock Mech. Geotech. Eng., 2021, 13(3): 568.

[124]

L.J. Ma, Z. Li, M.Y. Wang, J.W. Wu, and G. Li, Applicability of a new modified explicit three-dimensional Hoek–Brown failure criterion to eight rocks, Int. J. Rock Mech. Min. Sci., 133(2020), art. No. 104311.

[125]

X.C. Que, Z.D. Zhu, Z.H. Niu, S. Zhu, and L.X. Wang, A modified three-dimensional Hoek–Brown criterion for intact rocks and jointed rock masses, Geomech. Geophys. Geo Energy Geo Resour., 9(2023), No. 1, art. No. 7.

[126]

F. Gao, Y.G. Yang, H.M. Cheng, and C.Z. Cai, Novel 3D failure criterion for rock materials, Int. J. Geomech., 19(2019), No. 6, art. No. 04019046.

[127]

Shi XC, Li QL, Liu JF, Gao LY, Zhou X. An improved true triaxial Hoek–Brown strength criterion. Adv. Eng. Sci., 2023, 55(2): 214.

[128]

Yu MH, Zan YW, Zhao J, Yoshimine M. A unified strength criterion for rock material. Int. J. Rock Mech. Min. Sci., 2002, 39(8): 975.

[129]

Priest SD. Determination of shear strength and three-dimensional yield strength for the Hoek–Brown criterion. Rock Mech. Rock Eng., 2005, 38(4): 299.

[130]

Melkoumian N, Priest SD, Hunt SP. Further development of the three-dimensional Hoek–Brown yield criterion. Rock Mech. Rock Eng., 2009, 42(6): 835.

[131]

Benz T, Schwab R, Kauther RA, Vermeer PA. A Hoek–Brown criterion with intrinsic material strength factorization. Int. J. Rock Mech. Min. Sci., 2008, 45(2): 210.

[132]

Benz T, Schwab R. A quantitative comparison of six rock failure criteria. Int. J. Rock Mech. Min. Sci., 2008, 45(7): 1176.

[133]

Huang JQ, Zhao M, Du XL, Dai F, Ma C, Liu JB. An elasto-plastic damage model for rocks based on a new non-linear strength criterion. Rock Mech. Rock Eng., 2018, 51(5): 1413.

[134]

M.V. da Silva and A.N. Antão, A new Hoek–Brown–Matsuoka-Nakai failure criterion for rocks, Int. J. Rock Mech. Min. Sci., 172(2023), art. No. 105602.

[135]

A.K. Schwartzkopff, A. Sainoki, T. Bruning, and M. Karakus, A conceptual three-dimensional frictional model to predict the effect of the intermediate principal stress based on the Mohr–Coulomb and Hoek–Brown failure criteria, Int. J. Rock Mech. Min. Sci., 172(2023), art. No. 105605.

[136]

Zuo JP, Li HT, Xie HP, Ju Y, Peng SP. A nonlinear strength criterion for rock-like materials based on fracture mechanics. Int. J. Rock Mech. Min. Sci., 2008, 45(4): 594.

[137]

Zuo JP, Liu HH, Li HT. A theoretical derivation of the Hoek–Brown failure criterion for rock materials. J. Rock Mech. Geotech. Eng., 2015, 7(4): 361.

[138]

Wang ZF, Pan PZ, Zuo JP, Gao YH. A generalized nonlinear three-dimensional failure criterion based on fracture mechanics. J. Rock Mech. Geotech. Eng., 2023, 15(3): 630.

[139]

Zhou XP, Shou YD, Qian QH, Yu MH. Three-dimensional nonlinear strength criterion for rock-like materials based on the micromechanical method. Int. J. Rock Mech. Min. Sci., 2014, 72, 54.

[140]

Saroglou H, Tsiambaos G. A modified Hoek–Brown failure criterion for anisotropic intact rock. Int. J. Rock Mech. Min. Sci., 2008, 45(2): 223.

[141]

Q.G. Zhang, B.W. Yao, X.Y. Fan, et al., A modified Hoek–Brown failure criterion for unsaturated intact shale considering the effects of anisotropy and hydration, Eng. Fract. Mech., 241(2021), art. No. 107369.

[142]

Peng J, Rong G, Cai M, Wang XJ, Zhou CB. An empirical failure criterion for intact rocks. Rock Mech. Rock Eng., 2014, 47(2): 347.

[143]

Peng J, Cai M. A cohesion loss model for determining residual strength of intact rocks. Int. J. Rock Mech. Min. Sci., 2019, 119, 131.

[144]

Wu SC, Zhang SH, Guo C, Xiong LF. A generalized nonlinear failure criterion for frictional materials. Acta Geotech., 2017, 12(6): 1353.

[145]

Zhang SH. Study on Strength and Deformability of Hard Brittle Sandstone, 2019, Beijing, University of Science and Technology Beijing [Dissertation]

[146]

Wang JX, Wu SC, Chang XK, Cheng HY, Zhou ZH, Ren ZJ. A novel three-dimensional nonlinear unified failure criterion for rock materials. Acta Geotech., 2024, 19, 3337.

[147]

Wu SC, Zhang SH, Zhang G. Three-dimensional strength estimation of intact rocks using a modified Hoek–Brown criterion based on a new deviatoric function. Int. J. Rock Mech. Min. Sci., 2018, 107, 181.

[148]

S.H. Zhang, S.C. Wu, and G. Zhang, Strength and deformability of a low-porosity sandstone under true triaxial compression conditions, Int. J. Rock Mech. Min. Sci., 127(2020), art. No. 104204.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/