Recent progresses in thermal treatment of β-Ga2O3 single crystals and devices

Yuchao Yan, Zhu Jin, Hui Zhang, Deren Yang

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (7) : 1659-1677. DOI: 10.1007/s12613-024-2926-4

Recent progresses in thermal treatment of β-Ga2O3 single crystals and devices

Author information +
History +

Abstract

In recent years, ultra-wide bandgap β-Ga2O3 has emerged as a fascinating semiconductor material due to its great potential in power and photoelectric devices. In semiconductor industrial, thermal treatment has been widely utilized as a convenient and effective approach for substrate property modulation and device fabrication. Thus, a thorough summary of β-Ga2O3 substrates and devices behaviors after high-temperature treatment should be significant. In this review, we present the recent advances in modulating properties of β-Ga2O3 substrates by thermal treatment, which include three major applications: (i) tuning surface electrical properties, (ii) modifying surface morphology, and (iii) oxidating films. Meanwhile, regulating electrical contacts and handling with radiation damage and ion implantation have also been discussed in device fabrication. In each category, universal annealing conditions were speculated to figure out the corresponding problems, and some unsolved questions were proposed clearly. This review could construct a systematic thermal treatment strategy for various purposes and applications of β-Ga2O3.

Keywords

β-gallium oxide / thermal treatment / substrates / devices

Cite this article

Download citation ▾
Yuchao Yan, Zhu Jin, Hui Zhang, Deren Yang. Recent progresses in thermal treatment of β-Ga2O3 single crystals and devices. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(7): 1659‒1677 https://doi.org/10.1007/s12613-024-2926-4

References

[1]
Farzana E, Speck JS. Speck JS, Farzana E. Chapter 1: Introduction. Ultrawide Bandgap β-Ga2O3 Semiconductor: Theory and Applications, 2023 New York AIP Publishing LLC 1-1
[2]
S.J. Pearton, J.C. Yang, P.H. Cary IV, et al., A review of Ga2O3 materials, processing, and devices, Appl. Phys. Rev., 5(2018), No. 1, art. No. 011301.
[3]
Z. Galazka, β-Ga2O3 for wide-bandgap electronics and optoelectronics, Semicond. Sci. Technol., 33(2018), No. 11, art. No. 113001.
[4]
Playford HY, Hannon AC, Barney ER, Walton RI. Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction. Chemistry, 2013, 19(8): 2803,
CrossRef Google scholar
[5]
Roy R, Hill VG, Osborn EF. Polymorphism of Ga2O3 and the system Ga2O3–H2O. J. Am. Chem. Soc., 1952, 74(3): 719,
CrossRef Google scholar
[6]
Z. Galazka, A. Fiedler, A. Popp, et al., Bulk single crystals and physical properties of β-(AlxGa1−x)2O3 (x = 0–0.35) grown by the Czochralski method, J. Appl. Phys., 133(2023), No. 3, art. No. 035702.
[7]
K. Hoshikawa, T. Kobayashi, E. Ohba, and T. Kobayashi, 50mm diameter Sn-doped (001) β-Ga2O3 crystal growth using the vertical Bridgeman technique in ambient air, J. Cryst. Growth, 546(2020), art. No. 125778.
[8]
Mu WX, Jia ZT, Yin YR, et al.. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method. J. Alloys Compd., 2017, 714: 453,
CrossRef Google scholar
[9]
V.L.A. Vijayan, D. Dhanabalan, K.V. Akshita, and S.M. Babu, Investigation of Sn incorporation in β-Ga2O3 single crystals and its effect on structural and optical properties, ECS J. Solid State Sci. Technol., 11(2022), No. 10, art. No. 104003.
[10]
N. Xia, Y.Y. Liu, D. Wu, et al., β-Ga2O3 bulk single crystals grown by a casting method, J. Alloys Compd., 935(2023), art. No. 168036.
[11]
F. Orlandi, F. Mezzadri, G. Calestani, F. Boschi, and R. Fornari, Thermal expansion coefficients of β-Ga2O3 single crystals, Appl. Phys. Express, 8(2015), No. 11, art. No. 111101.
[12]
Víllora EG, Shimamura K, Yoshikawa Y, Aoki K, Ichinose N. Large-size β-Ga2O3 single crystals and wafers. J. Cryst. Growth, 2004, 270(3–4): 420,
CrossRef Google scholar
[13]
Shimura F. Chapter 13 Intrinsic/internal gettering. Semiconductors and Semimetals, 1994 Amsterdam Elsevier 577 Vol. 42
[14]
X.Y. Ma, L.M. Fu, D.X. Tian, and D.R. Yang, Rapid-thermal-processing-based intrinsic gettering for nitrogen-doped Czochralski silicon, J. Appl. Phys., 98(2005), No. 8, art. No. 084502.
[15]
Shimura F. Chapter 1 Introduction to oxygen in silicon. Semiconductors and Semimetals, 1994 Amsterdam Elsevier 1 Vol. 42
[16]
H. Peelaers, J.L. Lyons, J.B. Varley, and C.G.V. de Walle, Deep acceptors and their diffusion in Ga2O3, APL Mater., 7(2019), No. 2, art. No. 022519.
[17]
K.T. Liu, S.J. Chang, S.A. Wu, and Y. Horikoshi, Crystal polarity effects on magnesium implantation into GaN layer, Jpn. J. Appl. Phys., 49(2010), No. 7R, art. No. 071001.
[18]
A. Uedono, R. Tanaka, S. Takashima, et al., Dopant activation process in Mg-implanted GaN studied by monoenergetic positron beam, Sci. Rep., 11(2021), No. 1, art. No. 20660.
[19]
Porowski S, Grzegory I, Kolesnikov D, et al.. Annealing of GaN under high pressure of nitrogen. J. Phys. Condens. Matter, 2002, 14(44): 11097,
CrossRef Google scholar
[20]
Pearton SJ. Bhattacharya P, Fornari R, Kamimura H. Ion implantation in group III nitrides. Comprehensive Semiconductor Science and Technology, 2011 Amsterdam Elsevier 25, Vol. 4
CrossRef Google scholar
[21]
A. Uedono, H. Sakurai, T. Narita, et al., Effects of ultra-high-pressure annealing on characteristics of vacancies in Mg-implanted GaN studied using a monoenergetic positron beam, Sci. Rep., 10(2020), No. 1, art. No. 17349.
[22]
Feigelson BN, Anderson TJ, Abraham M, et al.. Multicycle rapid thermal annealing technique and its application for the electrical activation of Mg implanted in GaN. J. Cryst. Growth, 2012, 350(1): 21,
CrossRef Google scholar
[23]
K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts, Appl. Phys. Express, 6(2013), No. 8, art. No. 086502.
[24]
R. Sharma, M.E. Law, C. Fares, et al., The role of annealing ambient on diffusion of implanted Si in β-Ga2O3, AIP Adv., 9(2019), No. 8, art. No. 085111.
[25]
B. Fu, G.Z. Jian, W.X. Mu, et al., Crystal growth and design of Sn-doped β-Ga2O3: Morphology, defect and property studies of cylindrical crystal by EFG, J. Alloys Compd., 896(2022), art. No. 162830.
[26]
M.D. McCluskey, Point defects in Ga2O3, J. Appl. Phys., 127(2020), No. 10, art. No. 101101.
[27]
Lorenz MR, Woods JF, Gambino RJ. Some electrical properties of the semiconductor β-Ga2O3. J. Phys. Chem. Solids, 1967, 28(3): 403,
CrossRef Google scholar
[28]
T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, Vertical solar-blind deep-ultraviolet Schottky photode-tectors based on β-Ga2O3 substrates, Appl. Phys. Express, 1(2008), No. 1, art. No. 011202.
[29]
T. Oshima, K. Kaminaga, A. Mukai, et al., Formation of semi-insulating layers on semiconducting β-Ga2O3 single crystals by thermal oxidation, Jpn. J. Appl. Phys., 52(2013), No. 5R, art. No. 051101.
[30]
Galazka Z, Irmscher K, Uecker R, et al.. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J. Cryst. Growth, 2014, 404: 184,
CrossRef Google scholar
[31]
A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth, Jpn. J. Appl. Phys., 55(2016), No. 12, art. No. 1202A2.
[32]
He QM, Zhou XZ, Li QY, et al.. Selective high-resistance zones formed by oxygen annealing for GaO Schottky diode applications. IEEE Electron Device Lett., 2022, 43(11): 1933,
CrossRef Google scholar
[33]
X.Z. Zhou, Y.J. Ma, G.W. Xu, et al. Enhancement-mode β-Ga2O3 U-shaped gate trench vertical MOSFET realized by oxygen annealing, Appl. Phys. Lett., 121(2022), No. 22, art. No. 223501.
[34]
M.J. Tadjer, N.A. Mahadik, J.A. Freitas, et al., Ga2O3 Schottky barrier and heterojunction diodes for power electronics applications, [in] Proc. of SPIE: Gallium Nitride Materials and Devices XIII, Vol. 10532, San Francisco, 2018, art. No. 1053212.
[35]
M.J. Tadjer, J.A. Freitas Jr, J.C. Culbertson, et al., Structural and electronic properties of Si- and Sn-doped ( 2 ¯ 01 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{2}01$$\end{document}) β-Ga2O3 annealed in nitrogen and oxygen atmospheres, J. Phys. D: Appl. Phys., 53(2020), No. 50, art. No. 504002.
[36]
A. Langørgen, C. Zimmermann, Y.K. Frodason, et al. Influence of heat treatments in H2 and Ar on the E1 center in β-Ga2O3, J. Appl. Phys., 131(2022), No. 11, art. No. 115702.
[37]
A.Y. Polyakov, A.A. Vasilev, I.V. Shchemerov, et al., Conducting surface layers formed by hydrogenation of O-implanted β-Ga2O3, J. Alloys Compd., 945(2023), art. No. 169258.
[38]
A. Luchechko, V. Vasyltsiv, L. Kostyk, O. Tsvetkova, and B. Pavlyk, Thermally stimulated luminescence and conductivity of β-Ga2O3 crystals, J. Nano-Electron. Phys., 11(2019), No. 3, art. No. 03035.
[39]
Z.Y. Wu, Z.X. Jiang, C.C. Ma, et al., Energy-driven multi-step structural phase transition mechanism to achieve high-quality p-type nitrogen-doped β-Ga2O3 films, Mater. Today Phys., 17(2021), art. No. 100356.
[40]
J.P. McCandless, V. Protasenko, B.W. Morell, et al., Controlled Si doping of β-Ga2O3 by molecular beam epitaxy, Appl. Phys. Lett., 121(2022), No. 7, art. No. 072108.
[41]
Kurnosikov O, Van LP, Cousty J. About anisotropy of atomic-scale height step on (0001) sapphire surface. Surf. Sci., 2000, 459(3): 256,
CrossRef Google scholar
[42]
R.R. Wang, D. Guo, G.X. Xie, and G.S. Pan, Atomic step formation on sapphire surface in ultra-precision manufacturing, Sci. Rep., 6(2016), art. No. 29964.
[43]
Cuccureddu F, Murphy S, Shvets IV, et al.. Surface morphology of c-plane sapphire (α-alumina) produced by high temperature anneal. Surf. Sci., 2010, 604(15–16): 1294,
CrossRef Google scholar
[44]
T.C. Lovejoy, E.N. Yitamben, N. Shamir, et al., Surface morphology and electronic structure of bulk single crystal β-Ga2O3 (100), Appl. Phys. Lett., 94(2009), No. 8, art. No. 081906.
[45]
Bermudez VM. The structure of low-index surfaces of β-Ga2O3. Chem. Phys., 2006, 323(2–3): 193,
CrossRef Google scholar
[46]
T.C. Lovejoy, R.Y. Chen, X. Zheng, et al., Band bending and surface defects in β-Ga2O3, Appl. Phys. Lett., 100(2012), No. 18, art. No. 181602.
[47]
Navarro-Quezada A, Galazka Z, Alamé S, Skuridina D, Vogt P, Esser N. Surface properties of annealed semiconducting β-Ga2O3 (100) single crystals for epitaxy. Appl. Surf. Sci., 2015, 349: 368,
CrossRef Google scholar
[48]
Ohira S, Suzuki N, Arai N, et al.. Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing. Thin Solid Films, 2008, 516(17): 5763,
CrossRef Google scholar
[49]
Ohira S, Arai N, Oshima T, Fujita S. Atomically controlled surfaces with step and terrace of β-Ga2O3 single crystal substrates for thin film growth. Appl. Surf. Sci., 2008, 254(23): 7838,
CrossRef Google scholar
[50]
A. Pancotti, T.C. Back, W. Hamouda, et al., Surface relaxation and rumpling of Sn-doped β-Ga2O3 (010), Phys. Rev. B, 102(2020), No. 24, art. No. 245306.
[51]
A. Okada, M. Nakatani, L. Chen, R.A. Ferreyra, and K. Kadono, Effect of annealing conditions on the optical properties and surface morphologies of ( 2 ¯ 01 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{2}01$$\end{document})-oriented β-Ga2O3 crystals, Appl. Surf. Sci., 574(2022), art. No. 151651.
[52]
B.Y. Feng, G.H. He, X.D. Zhang, et al., The effect of annealing on the Sn-doped ( 2 ¯ 01 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{2}01$$\end{document}) β-Ga2O3 bulk Mater. Sci. Semicond. Process., 147(2022), art. No. 106752.
[53]
R. Schewski, K. Lion, A. Fiedler, et al., Step-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting, APL Mater., 7(2019), No. 2, art. No. 022515.
[54]
S.B. Anooz, R. Grüneberg, C. Wouters, et al. Step flow growth of β-Ga2O3 thin films on vicinal (100) β-Ga2O3 substrates grown by MOVPE, Appl. Phys. Lett., 116(2020), No. 18, art. No. 182106.
[55]
P. Mazzolini, A. Falkenstein, Z. Galazka, M. Martin, and O. Bierwagen, Offcut-related step-flow and growth rate enhancement during (100) β-Ga2O3 homoepitaxy by metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE), Appl. Phys. Lett., 117(2020), No. 22, art. No. 222105.
[56]
A. Fiedler, R. Schewski, M. Baldini, et al., Influence of incoherent twin boundaries on the electrical properties of β-Ga2O3 layers homoepitaxially grown by metal-organic vapor phase epitaxy, J. Appl. Phys., 122(2017), No. 16, art. No. 165701.
[57]
R. Togashi, K. Nomura, C. Eguchi, et al., Thermal stability of β-Ga2O3 in mixed flows of H2 and N2, Jpn. J. Appl. Phys., 54(2015), No. 4, art. No. 041102.
[58]
H. Yamaguchi, S. Watanabe, Y. Yamaoka, K. Koshi, and A. Kuramata, Subsurface- damaged layer in (010)-oriented β-Ga2O3 substrates, Jpn. J. Appl. Phys., 59(2020), No. 12, art. No. 125503.
[59]
Li TT, Guo W, Ma L, et al.. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol., 2021, 16: 1201,
CrossRef Google scholar
[60]
Liu L, Li TT, Ma L, et al.. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature, 2022, 605(7908): 69,
CrossRef Google scholar
[61]
Itoh H, Narui S, Zhang Z, Ichonokawa T. Structure of double-atomic-height steps in Si(001) vicinal surfaces observed by scanning tunneling microscopy. Surf. Sci. Lett., 1992, 277(3): L70
[62]
L. Cvitkovich, D. Waldhör, A.M. El-Sayed, M. Jech, C. Wilhelmer, and T. Grasser, Dynamic modeling of Si(100) thermal oxidation: Oxidation mechanisms and realistic amorphous interface generation, Appl. Surf. Sci., 610(2023), art. No. 155378.
[63]
C.P. Wan, H.Y. Xu, J.H. Xia, and J.P. Ao, Ultrahigh-temperature oxidation of 4H–SiC (0001) and gate oxide reliability dependence on oxidation temperature, J. Cryst. Growth, 530(2020), art. No. 125250.
[64]
Chen W, Jiao T, Li ZM, et al.. Preparation of β-Ga2O3 nanostructured films by thermal oxidation of GaAs substrate. Ceram. Int., 2022, 48(4): 5698,
CrossRef Google scholar
[65]
L. Leontie, V. Sprincean, D. Untila, et al., Synthesis and optical properties of Ga2O3 nanowires grown on GaS substrate, Thin Solid Films, 689(2019), art. No. 137502.
[66]
Y.R. Han, Y.F. Wang, S.H. Fu, et al., Ultrahigh detectivity broad spectrum UV photodetector with rapid response speed based on p-β Ga2O3/n-GaN heterojunction fabricated by a reversed substitution doping method, Small, 19(2023), No. 16, art. No. 2206664.
[67]
Filippo E, Siciliano M, Genga A, Micocci G, Tepore A, Siciliano T. Single crystalline β-Ga2O3 nanowires synthesized by thermal oxidation of GaSe layer. Mater. Res. Bull., 2013, 48(5): 1741,
CrossRef Google scholar
[68]
Readinger ED, Wolter SD, Waltemyer DL, et al.. Wet thermal oxidation of GaN. J. Electron. Mater., 1999, 28(3): 257,
CrossRef Google scholar
[69]
J.J. Wang, X.Q. Ji, Z.Y. Yan, et al., High sensitivity Ga2O3 ultraviolet photodetector by one-step thermal oxidation of p-GaN films, Mater. Sci. Semicond. Process., 159(2023), art. No. 107372.
[70]
T. Yamada, J. Ito, R. Asahara, et al., Comprehensive study on initial thermal oxidation of GaN(0001) surface and subsequent oxide growth in dry oxygen ambient, J. Appl. Phys., 121(2017), No. 3, art. No. 035303.
[71]
Víllora EG, Shimamura K, Aoki K, Ichinose N. Reconstruction of the β-Ga2O3 (100) cleavage surface to hexagonal GaN after NH3 nitridation. J. Cryst. Growth, 2004, 270(3–4): 462,
CrossRef Google scholar
[72]
Lee HJ, Shin TI, Yoon DH. Influence of NH3 gas for GaN epilayer on β-Ga2O3 substrate by nitridation. Surf. Coat. Technol., 2008, 202(22–23): 5497,
CrossRef Google scholar
[73]
F.W. Mu, K. Iguchi, H. Nakazawa, et al., A comparison study: Direct wafer bonding of SiC–SiC by standard surface-activated bonding and modified surface-activated bonding with Si-containing Ar ion beam, Appl. Phys. Express, 9(2016), No. 8, art. No. 081302.
[74]
Xu WH, You TG, Mu FW, et al.. Thermodynamics of ion-cutting of β-Ga2O3 and wafer-scale heterogeneous integration of a β-Ga2O3 thin film onto a highly thermal conductive SiC substrate. ACS Appl. Electron. Mater., 2022, 4(1): 494,
CrossRef Google scholar
[75]
Z. Jian, C.J. Clymore, K. Sun, U. Mishra, and E. Ahmadi, Demonstration of atmospheric plasma activated direct bonding of N-polar GaN and β-Ga2O3 (001) substrates, Appl. Phys. Lett., 120(2022), No. 14, art. No. 142101.
[76]
Wong M H. Speck JS, Farzana E. High breakdown voltage β-Ga2O3 Schottky diodes. Ultrawide Bandgap β-Ga2O3 Semiconductor. Theory and Applications, 2023 New York AIP Publishing LLC 8-1
[77]
C. Lu, X.Q. Ji, Z. Liu, et al., A review of metal-semiconductor contacts for β-Ga2O3, J. Phys. D: Appl. Phys., 55(2022), No. 46, art. No. 463002.
[78]
Z. Liu, J. Yu, P.G. Li, et al., Band alignments of β-Ga2O3 with MgO, A12O3 and MgAl2O4 measured by X-ray photoelectron spectroscopy, J. Phys. D: Appl. Phys., 52(2019), No. 29, art. No. 295104.
[79]
Qin ZX, Chen ZZ, Tong YZ, et al.. Study of Ti/Au, Ti/Al/Au, and Ti/Al/Ni/Au ohmic contacts to n-GaN. Appl. Phys. A, 2004, 78(5): 729,
CrossRef Google scholar
[80]
Yao Y, Davis RF, Porter LM. Investigation of different metals as ohmic contacts to β-Ga2O3: Comparison and analysis of electrical behavior, morphology, and other physical properties. J. Electron. Mater., 2017, 46(4): 2053,
CrossRef Google scholar
[81]
M.H. Lee and R.L. Peterson, Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga2O3, APL Mater., 7(2019), No. 2, art. No. 022524.
[82]
Lee MH, Peterson RL. Annealing induced interfacial evolution of titanium/gold metallization on unintentionally doped β-Ga2O3. ECS J. Solid State Sci. Technol., 2019, 8(7): Q3176,
CrossRef Google scholar
[83]
Y. Kim, M.K. Kim, K.H. Baik, and S. Jang, Low-resistance Ti/Au ohmic contact on (001) plane Ga2O3 crystal, ECS J. Solid State Sci. Technol., 11(2022), No. 4, art. No. 045003.
[84]
L.A.M. Lyle, Critical review of ohmic and Schottky contacts to β-Ga2O3, J. Vac. Sci. Technol. A, 40(2022), No. 6, art. No. 060802.
[85]
W.A. Callahan, E. Supple, D. Ginley, et al., Ultrathin stable Ohmic contacts for high-temperature operation of β-Ga2O3 devices, J. Vac. Sci. Technol. A, 41(2023), No. 4, art. No. 043211.
[86]
Shi JJ, Xia XC, Liang HW, et al.. Low resistivity ohmic contacts on lightly doped n-type β-Ga2O3 using Mg/Au. J. Mater. Sci. Mater. Electron., 2019, 30(4): 3860,
CrossRef Google scholar
[87]
P.H. Carey IV, J.C. Yang, F. Ren, et al., Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au, AIP Adv., 7(2017), No. 9, art. No. 095313.
[88]
P.H. Carey IV, J.C. Yang, F. Ren, et al., Improvement of ohmic contacts on Ga2O3 through use of ITO-interlayers, J. Vac. Sci. Technol. B, 35(2017), No. 6, art. No. 061201.
[89]
K.D. Chabak, D.E. Walker, A.J. Green, et al., Sub-micron gallium oxide radio frequency field-effect transistors, [in] 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Ann Arbor, 2018, p. 1.
[90]
M. Higashiwaki, K. Sasaki, T. Kamimura, et al., Depletion-mode Ga2O3 metal-oxide- semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics, Appl. Phys. Lett., 103(2013), No. 12, art. No. 123511.
[91]
X.Z. Zhou, G.W. Xu, and S.B. Long, A large-area multi-finger β-Ga2O3 MOSFET and its self-heating effect, J. Semicond., 44(2023), No. 7, art. No. 072804.
[92]
H.N. Masten, J.D. Phillips, and R.L. Peterson, Effects of high temperature annealing on the atomic layer deposited HfO2/β-Ga2O3 (010) interface, J. Appl. Phys., 131(2022), No. 3, art. No. 035106.
[93]
A. Jayawardena, R.P. Ramamurthy, A.C. Ahyi, D. Morisette, and S. Dhar, Interface trapping in ( 2 ¯ 01 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{2}01$$\end{document}) β-Ga2O3 MOS capacitors with deposited dielectrics, Appl. Phys. Lett., 112(2018), No. 19, art. No. 192108.
[94]
E. Farzana, F. Alema, W.Y. Ho, et al., Vertical β-Ga2O3 field plate Schottky barrier diode from metal-organic chemical vapor deposition, Appl. Phys. Lett., 118(2021), No. 16, art. No. 162109.
[95]
Choi JH, Cho CH, Cha HY. Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate. Results Phys., 2018, 9: 1170,
CrossRef Google scholar
[96]
H. Okumura and T. Tanaka, Dry and wet etching for β-Ga2O3 Schottky barrier diodes with mesa termination, Jpn. J. Appl. Phys., 58(2019), No. 12, art. No. 120902.
[97]
Zhou F, Gong HH, Xu WZ, et al.. 1.95-kV beveled-mesa NiO/β-Ga2O3 heterojunction diode with 98.5% conversion efficiency and over million-times overvoltage ruggedness. IEEE Trans. Power Electron., 2022, 37(2): 1223,
CrossRef Google scholar
[98]
Lin CH, Yuda Y, Wong MH, et al.. Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation. IEEE Electron Device Lett., 2019, 40(9): 1487,
CrossRef Google scholar
[99]
X.Y. Xia, M.H. Xian, C. Fares, et al., Nitrogen ion-implanted resistive regions for edge termination of vertical Ga2O3 rectifiers, J. Vac. Sci. Technol. A, 39(2021), No. 6, art. No. 063405.
[100]
Wong MH, Sasaki K, Kuramata A, Yamakoshi S, Higashiwaki M. Field- plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett., 2016, 37(2): 212,
CrossRef Google scholar
[101]
D.I. Shahin, M.J. Tadjer, V.D. Wheeler, et al., Electrical characterization of ALD HfO2 high-k dielectrics on ( 2 ¯ 01 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{2}01$$\end{document}) β-Ga2O3, Appl. Phys. Lett., 112(2018), No. 4, art. No. 042107.
[102]
C.V. Prasad and Y.S. Rim, Review on interface engineering of low leakage current and on-resistance for high-efficiency Ga2O3-based power devices, Mater. Today Phys., 27(2022), art. No. 100777.
[103]
Kita K, Suzuki E, Mao Q. Study on the effects of postdeposition annealing on SiO2/β-Ga2O3 MOS characteristics. ECS Trans., 2019, 92(1): 59,
CrossRef Google scholar
[104]
K. Zeng and U. Singisetti, Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations, Appl. Phys. Lett., 111(2017), No. 12, art. No. 122108.
[105]
C.J. Klingshirn, A. Jayawardena, S. Dhar, et al., Analytical electron microscopy of ( 2 ¯ 01 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{2}01$$\end{document}) β-Ga2O3/SiO2 and ( 2 ¯ 01 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{2}01$$\end{document}) β-Ga2O3/Al2O3 interface structures in MOS capacitors, J. Appl. Phys., 129(2021), No. 19, art. No. 195705.
[106]
Carim AH, Bhattacharyya A. Si/SiO2 interface roughness: Structural observations and electrical consequences. Appl. Phys. Lett., 1985, 46(9): 872,
CrossRef Google scholar
[107]
K. Tetzner, M. Klupsch, A. Popp, et al., Enhancement-mode vertical (100) β-Ga2O3 FinFETs with an average breakdown strength of 2.7 MV cm−1, Jpn. J. Appl. Phys., 62(2023), art. No. SF1010.
[108]
M.H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, Enhancement- mode Ga2O3 MOSFETs with Siion-implanted source and drain, Appl. Phys. Express, 10(2017), No. 4, art. No. 041101.
[109]
Bohr MT, Chau RS, Ghani T, Mistry K. The high-k solution. IEEE Spectr., 2007, 44(10): 29,
CrossRef Google scholar
[110]
Wheeler VD, Shahin DI, Tadjer MJ, Eddy CR Jr. Band alignments of atomic layer deposited ZrO2 and HfO2 high-k dielectrics with ( 2 ¯ 01 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{2}01$$\end{document}) β-Ga2O3. ECS J. Solid State Sci. Technol., 2017, 6(2): Q3052,
CrossRef Google scholar
[111]
Y.C. Chang, H.C. Chiu, Y.J. Lee, et al., Structural and electrical characteristics of atomic layer deposited high κ HfO2 on GaN, Appl. Phys. Lett., 90(2007), No. 23, art. No. 232904.
[112]
M. Labed, J.Y. Min, J.Y. Hong, et al., Interface engineering of β-Ga2O3 MOS-type Schottky barrier diode using an ultrathin HfO2 interlayer, Surf. Interfaces, 33(2022), art. No. 102267.
[113]
R. Hawkins, X.L. Wang, N. Moumen, R.M. Wallace, and C.D. Young, Impact of process anneals on high-k/β-Ga2O3 interfaces and capacitance, J. Vac. Sci. Technol. A, 41(2023), No. 2, art. No. 023203.
[114]
M.E. Ingebrigtsen, A.Y. Kuznetsov, B.G. Svensson, et al., Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3, APL Mater., 7(2019), No. 2, art. No. 022510.
[115]
Li TR, Tu T, Sun YW, et al.. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron., 2020, 3(8): 473,
CrossRef Google scholar
[116]
Z.C. Lu, K. Tuokedaerhan, H.T. Cai, H.J. Du, and R.J. Zhang, Effect of annealing temperature on the structure and properties of La2O3 high-K gate dielectric films prepared by the sol–gel method, Coatings, 13(2023), No. 6, art. No. 1085.
[117]
N. Manikanthababu, H. Sheoran, P. Siddham, and R. Singh, Review of radiation-induced effects on β-Ga2O3 materials and devices, Crystals, 12(2022), No. 7, art. No. 1009.
[118]
A. Nikolskaya, E. Okulich, D. Korolev, et al., Ion implantation in β-Ga2O3: Physics and technology, J. Vac. Sci. Technol. A, 39(2021), No. 3, art. No. 030802.
[119]
K.A. Olive, Review of particle physics, Chin. Phys. C, 38(2014), No. 9, art. No. 090001.
[120]
Yang G, Jang S, Ren F, Pearton SJ, Kim J. Influence of high-energy proton irradiation on β-Ga2O3 nanobelt field-effect transistors. ACS Appl. Mater. Interfaces, 2017, 9(46): 40471,
CrossRef Google scholar
[121]
J.C. Yang, Z.T. Chen, F. Ren, et al., 10 MeV proton damage in β-Ga2O3 Schottky rectifiers, J. Vac. Sci. Technol. B, 36(2018), No. 1, art. No. 011206.
[122]
Cojocaru LN. Defect-annealing in neutron-damaged β-Ga2O3. Radiat. Eff., 1974, 21(3): 157,
CrossRef Google scholar
[123]
H.T. Gao, S. Muralidharan, M.R. Karim, et al., Neutron irradiation and forming gas anneal impact on β-Ga2O3 deep level defects, J. Phys. D: Appl. Phys., 53(2020), No. 46, art. No. 465102.
[124]
J.Y. Liu, Z. Han, L. Ren, et al., Oxygen vacancies and local amorphization introduced by high fluence neutron irradiation in β-Ga2O3 power diodes, Appl. Phys. Lett., 123(2023), No. 11, art. No. 112106.
[125]
Rudan M. Thermal diffusion—Ion implantation. Physics of Semiconductor Devices, 2018 Cham Springer 673,
CrossRef Google scholar
[126]
Zolper JC. Ion implantation in group III-nitride semiconductors: A tool for doping and defect studies. J. Cryst. Growth, 1997, 178(1–2): 157,
CrossRef Google scholar
[127]
Tadjer MJ, Fares C, Mahadik NA, et al.. Damage recovery and dopant diffusion in Si and Sn ion implanted β-Ga2O3. ECS J. Solid State Sci. Technol., 2019, 8(7): Q3133,
CrossRef Google scholar
[128]
J.A. Spencer, M.J. Tadjer, A.G. Jacobs, et al., Activation of implanted Si, Ge, and Sn donors in high-resistivity halide vapor phase epitaxial β-Ga2O3: N with high mobility, Appl. Phys. Lett., 121(2022), No. 19, art. No. 192102.
[129]
M.H. Wong, C.H. Lin, A. Kuramata, et al., Acceptor doping of β-Ga2O3 by Mg and N ion implantations, Appl. Phys. Lett., 113(2018), No. 10, art. No. 102103.
[130]
E.A. Anber, D. Foley, A.C. Lang, et al., Structural transition and recovery of Ge implanted β-Ga2O3, Appl. Phys. Lett., 117(2020), No. 15, art. No. 152101.
[131]
T. Yoo, X.Y. Xia, F. Ren, et al., Atomic-scale characterization of structural damage and recovery in Sn ion-implanted β-Ga2O3, Appl. Phys. Lett., 121(2022), No. 7, art. No. 072111.
[132]
Y.K. Frodason, P.P. Krzyzaniak, L. Vines, J.B. Varley, C.G.V. de Walle, and K.M.H. Johansen, Diffusion of Sn donors in β-Ga2O3, APL Mater., 11(2023), No. 4, art. No. 041121.
[133]
Ghadi HJ, McGlone JF, Farzana E, Arehart AR, Ringel SA. Speck JS, Farzana E. Radiation effects on β-Ga2O3 materials and devices. Ultrawide Bandgap β-Ga2O3 Semiconductor: Theory and Applications, 2023 New York AIP Publishing LLC 12-1
[134]
N. Manikanthababu, B.R. Tak, K. Prajna, et al., Swift heavy ion irradiation-induced modifications in the electrical and surface properties of β-Ga2O3, Appl. Phys. Lett., 117(2020), No. 14, art. No. 142105.
[135]
N. Manikanthababu, B.R. Tak, K. Prajna, et al., Electronic excitation-induced tunneling and charge-trapping explored by in situ electrical characterization in Ni/HfO2/β-Ga2O3 metal-oxide-semiconductor capacitors, Mater. Sci. Eng. B, 281(2022), art. No. 115716.
[136]
J.C. Yang, F. Ren, S.J. Pearton, G. Yang, J. Kim, and A. Kuramata, 1.5 MeV electron irradiation damage in β-Ga2O3 vertical rectifiers, J. Vac. Sci. Technol. B, 35(2017), No. 3, art. No. 031208.
[137]
J. Lee, E. Flitsiyan, L. Chernyak, et al., Effect of 1.5 MeV electron irradiation on β-Ga2O3 carrier lifetime and diffusion length, Appl. Phys. Lett., 112(2018), No. 8, art. No. 082104.
[138]
Modak S, Chernyak L, Khodorov S, et al.. Impact of electron injection and temperature on minority carrier transport in alpha-irradiated β-Ga2O3 Schottky rectifiers. ECS J. Solid State Sci. Technol., 2019, 8(7): Q3050,
CrossRef Google scholar
[139]
Yang JC, Koller GJ, Fares C, et al.. 60Co gamma ray damage in homoepitaxial β-Ga2O3 Schottky rectifiers. ECS J. Solid State Sci. Technol., 2019, 8(7): Q3041,
CrossRef Google scholar
[140]
Bhuiyan MA, Zhou H, Jiang R, et al.. Charge trapping in Al2O3/β-Ga2O3-based MOS capacitors. IEEE Electron Device Lett., 2018, 39(7): 1022,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/