Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process

Shengchao Duan, Min Joo Lee, Yao Su, Wangzhong Mu, Dong Soo Kim, Joo Hyun Park

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (7) : 1525-1539. DOI: 10.1007/s12613-024-2905-9
Research Article

Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process

Author information +
History +

Abstract

In combination with theoretical calculations, experiments were conducted to investigate the evolution behavior of nonmetallic inclusions (NMIs) during the manufacture of large-scale heat-resistant steel ingots using 9CrMoCoB heat-resistant steel and CaF2–CaO–Al2O3–SiO2–B2O3 electroslag remelting (ESR)-type slag in an 80-t industrial ESR furnace. The main types of NMI in the consumable electrode comprised pure alumina, a multiphase oxide consisting of an Al2O3 core and liquid CaO–Al2O3–SiO2–MnO shell, and M23C6 carbides with an MnS core. The Al2O3 and MnS inclusions had higher precipitation temperatures than the M23C6-type carbide under equilibrium and nonequilibrium solidification processes. Therefore, inclusions can act as nucleation sites for carbide layer precipitation. The ESR process completely removed the liquid CaO–Al2O3–SiO2–MnO oxide and MnS inclusion with a carbide shell, and only the Al2O3 inclusions and Al2O3 core with a carbide shell occupied the remelted ingot. The M23C6-type carbides in steel were determined as Cr23C6 based on the analysis of transmission electron microscopy results. The substitution of Cr with W, Fe, or/and Mo in the Cr23C6 lattice caused slight changes in the lattice parameter of the Cr23C6 carbide. Therefore, Cr21.34Fe1.66C6, (Cr19W4)C6, Cr18.4Mo4.6C6, and Cr16Fe5Mo2C6 can match the fraction pattern of Cr23C6 carbide. The Al2O3 inclusions in the remelted ingot formed due to the reduction of CaO, SiO2, and MnO components in the liquid inclusion. The increased Al content in liquid steel or the higher supersaturation degree of Al2O3 precipitation in the remelted ingot than that in the electrode can be attributed to the evaporation of CaF2 and the increase in CaO content in the ESR-type slag.

Keywords

nonmetallic inclusion / heat-resistant steel / electroslag remelting / M23C6 carbide / MnS inclusion / supersaturation degree

Cite this article

Download citation ▾
Shengchao Duan, Min Joo Lee, Yao Su, Wangzhong Mu, Dong Soo Kim, Joo Hyun Park. Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(7): 1525‒1539 https://doi.org/10.1007/s12613-024-2905-9

References

[[1]]
Horiuchi T, Igarashi M, Abe F. Improved utilization of added B in 9Cr heat-resistant steels containing W. ISIJ Int., 2002, 42: S67,
CrossRef Google scholar
[[2]]
Masuyama F. History of power plants and progress in heat resistant steels. ISIJ Int., 2001, 41(6): 612,
CrossRef Google scholar
[[3]]
Yan W, Wang W, Shan YY, Yang K, Sha W. . 9-12Cr Heat-Resistant Steels, 2015 Cham Springer International Publishing,
CrossRef Google scholar
[[4]]
F. Abe, Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants, Sci. Technol. Adv. Mater., 9(2008), No. 1, art. No. 013002.
[[5]]
Hu XB, Li L, Wu XC, Zhang M. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium. Int. J. Fatigue, 2006, 28(3): 175,
CrossRef Google scholar
[[6]]
Zhou XS, Liu CX, Yu LM, Liu YC, Li HJ. Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review. J. Mater. Sci. Technol., 2015, 31(3): 235,
CrossRef Google scholar
[[7]]
Zhou YH, Liu YC, Zhou XS, et al.. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review. J. Mater. Sci. Technol., 2017, 33(12): 1448,
CrossRef Google scholar
[[8]]
Klueh RL. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. Int. Mater. Rev., 2005, 50(5): 287,
CrossRef Google scholar
[[9]]
Z. Liu, X.T. Wang, and C. Dong, Effect of boron on G115 martensitic heat resistant steel during aging at 650°C, Mater. Sci. Eng. A, 787(2020), art. No. 139529.
[[10]]
M. Sharma, I. Ortlepp, and W. Bleck, Boron in heat-treatable steels: A review, Steel Res. Int., 90(2019), No. 11, art. No. 1900133.
[[11]]
D.S. Kim, G.J. Lee, M.B. Lee, J.I. Hur, and J.W. Lee, Manufacturing of 9CrMoCoB steel of large ingot with homogeneity by ESR process, IOP Conf. Ser. Mater. Sci. Eng., 143(2016), art. No. 012002.
[[12]]
L.Z. Peng, Z.H. Jiang, and X. Geng, Design of ESR slag for remelting 9CrMoCoB steel through experiments and thermodynamic calculations, Calphad, 70(2020), art. No. 101782.
[[13]]
Duan SC, Park JH. Comparison of oxidation behavior of various reactive elements in alloys during electroslag remelting (ESR) process: An overview. ISIJ Int., 2022, 62(8): 1561,
CrossRef Google scholar
[[14]]
Duan SC, Lee MJ, Kim DS, Park JH. Oxidation behavior of boron in 9CrMoCoB steel by CaF2–CaO–Al2O3–SiO2–B2O3 electroslag remelting (ESR) type slag. J. Mater. Res. Technol., 2022, 17: 574,
CrossRef Google scholar
[[15]]
J.H. Park and Y. Kang, Inclusions in stainless steels–A review, Steel Res. Int., 88(2017), No. 12, art. No. 1700130.
[[16]]
Park JH, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ Int., 2010, 50(10): 1333,
CrossRef Google scholar
[[17]]
Park JH, Zhang LF. Kinetic modeling of nonmetallic inclusions behavior in molten steel: A review. Metall. Mater. Trans. B, 2020, 51(6): 2453,
CrossRef Google scholar
[[18]]
Yang SF, Yang SL, Qu JL, et al.. Inclusions in wrought superalloys: A review. J. Iron Steel Res. Int., 2021, 28(8): 921,
CrossRef Google scholar
[[19]]
Findley KO, Evans JL, Saxena A. A critical assessment of fatigue crack nucleation and growth models for Ni- and Ni, Fe-based superalloys. Int. Mater. Rev., 2011, 56(1): 49,
CrossRef Google scholar
[[20]]
Holt RT, Wallace W. Impurities and trace elements in nickel-base superalloys. Int. Met. Rev., 1976, 21(1): 1,
CrossRef Google scholar
[[21]]
Gao XY, Zhang L, Qu XH, Chen XW, Luan YF. Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting. Int. J. Miner. Metall. Mater., 2020, 27(11): 1551,
CrossRef Google scholar
[[22]]
J. Wang, L.Z. Wang, J.Q. Li, C.Y. Chen, S.F. Yang, and X. Li, Effects of aluminum and titanium additions on the formation of nonmetallic inclusions in nickel-based superalloys, J. Alloys Compd., 906(2022), art. No. 164281.
[[23]]
Shi AJ, Wang Z, Shi CB, Guo L, Guo CQ, Guo ZC. Supergravity-induced separation of oxide and nitride inclusions from inconel 718 superalloy melt. ISIJ Int., 2020, 60(2): 205,
CrossRef Google scholar
[[24]]
Al-Jarba KA, Fuchs GE. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy. Mater. Sci. Eng. A, 2004, 373(1–2): 255,
CrossRef Google scholar
[[25]]
He LZ, Zheng Q, Sun XF, et al.. Effect of carbides on the creep properties of a Ni-base superalloy M963. Mater. Sci. Eng. A, 2005, 397(1–2): 297,
CrossRef Google scholar
[[26]]
Liu LR, Jin T, Zhao NR, Sun XF, Guan HR, Hu ZQ. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy. Mater. Sci. Eng. A, 2003, 361(1–2): 191,
CrossRef Google scholar
[[27]]
Yang SL, Yang SF, Liu W, Li JS, Gao JG, Wang Y. Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy. Int. J. Miner. Metall. Mater., 2023, 30(5): 939,
CrossRef Google scholar
[[28]]
Ha VT, Jung WS. Niobium carbo-nitride precipitation behavior in a high nitrogen 15Cr-15Ni heat resistant austenitic stainless steel. Met. Mater. Int., 2011, 17(5): 713,
CrossRef Google scholar
[[29]]
Sun WR, Guo SR, Lu DZ, Hu ZO. Effect of sulfur on the solidification and segregation in Inconel 718 alloy. Mater. Lett., 1997, 31(3–6): 195,
CrossRef Google scholar
[[30]]
Whelan EP, Grzedzielski MS. H-phase sulphocarbides and sulphur in nickel-base superalloys. Met. Technol., 1974, 1(1): 186,
CrossRef Google scholar
[[31]]
Chen XC, Shi CB, Guo HJ, Wang F, Ren H, Feng D. Investigation of oxide inclusions and primary carbonitrides in inconel 718 superalloy refined through electroslag remelting process. Metall. Mater. Trans. B, 2012, 43(6): 1596,
CrossRef Google scholar
[[32]]
Shi X, Duan SC, Yang WS, Mao MT, Guo HJ, Guo J. Effects of remelting current on structure, composition, microsegregation, and inclusions in inconel 718 electroslag remelting ingots. Metall. Mater. Trans. B, 2019, 50(6): 3072,
CrossRef Google scholar
[[33]]
Duan SC, Shi X, Wang F, et al.. Investigation of desulfurization of Inconel 718 superalloys by ESR type slags with different TiO2 content. J. Mater. Res. Technol., 2019, 8(3): 2508,
CrossRef Google scholar
[[34]]
Sakuraya K, Okada H, Abe F. BN type inclusions formed in high Cr ferritic heat resistant steel. Energy Mater., 2006, 1(3): 158,
CrossRef Google scholar
[[35]]
Li Y, Liu C, Zhang T, Jiang M, Peng C. Inclusions modification in heat resistant steel containing rare earth elements. Ironmaking Steelmaking, 2018, 45(1): 76,
CrossRef Google scholar
[[36]]
Zhang L, Hou YH, Li YC, Xiang ZL, Wang EG. Size and type of inclusions in Fe–Cr–Co Heat–resistant steel and elevated-temperature strength under the effect of electromagnetic stirring. ISIJ Int., 2019, 59(6): 1049,
CrossRef Google scholar
[[37]]
Li ZB. . Electroslag Metallurgy Theory and Practice, 2010 Beijing Metallurgical Industry Press 66
[[38]]
Jiang ZH. . Electroslag Metallurgy, 2015 Beijing Science Press
[[39]]
A. Kharicha, E. Karimi-Sibaki, M.H. Wu, A. Ludwig, and J. Bohacek, Review on modeling and simulation of electroslag remelting, Steel Res. Int., 89(2018), No. 1, art. No. 1700100.
[[40]]
Fu J, Zhu J. Changes in oxide inclusions during electroslag remelting. Acta Metall. Sin., 1964, 7(3): 250
[[41]]
Mitchell A, Bell M. On the origin of oxide inclusions in ingots made by the electroslag process. Can. Metall. Q., 1972, 11(2): 363,
CrossRef Google scholar
[[42]]
Dong YW, Jiang ZH, Cao YL, Yu A, Hou D. Effect of slag on inclusions during electroslag remelting process of die steel. Metall. Mater. Trans. B, 2014, 45(4): 1315,
CrossRef Google scholar
[[43]]
Wang Q, Wang RT, He Z, Li GQ, Li BK, Li HB. Numerical analysis of inclusion motion behavior in electroslag remelting process. Int. J. Heat Mass Transf., 2018, 125: 1333,
CrossRef Google scholar
[[44]]
X.C. Huang, B.K. Li, Z.Q. Liu, M.Z. Li, and F.S. Qi, Modeling of fluid flow, heat transfer and inclusion removal in electroslag remelting process with a rotating electrode, Int. J. Heat Mass Transf., 163(2020), art. No. 120473.
[[45]]
Wang SJ, Shi CB, Liang YJ, Wan XX, Zhu X. Evolution and formation of Non-metallic inclusions during electroslag remelting of a heat-resistant steel for ultra-supercritical power plants. Metall. Mater. Trans. B, 2022, 53(5): 3095,
CrossRef Google scholar
[[46]]
Y. Zhao, C.B. Shi, S.J. Wang, P. Ren, and J. Li, Reoxidation of liquid steel and evolution of inclusions during protective atmosphere electroslag remelting of Ce-containing heat-resistant stainless steel, J. Iron Steel Res. Int., (2023). DOI: https://doi.org/10.1007/s42243-023-01092-3
[[47]]
Park JH, Kim DJ, Min DJ. Characterization of non-metallic inclusions in high-manganese and aluminum-alloyed austenitic steels. Metall. Mater. Trans. A, 2012, 43(7): 2316,
CrossRef Google scholar
[[48]]
Park JH, Min DJ. Thermodynamics of fluoride vaporisation from slags containing CaF2 at 1773 K. Steel Res. Int., 2004, 75(12): 807,
CrossRef Google scholar
[[49]]
Liu Y, Wang Y, Li GQ, Yuan C, Lu R, Li BK. Investigation on the structure, fluoride vaporization and crystallization behavior of CaF2–CaO–Al2O3–(SiO2) slag for electroslag remelting. J. Therm. Anal. Calorim., 2020, 139(2): 923,
CrossRef Google scholar
[[50]]
Dai CH, Zhang XP, Shui L. A new method for measuring activities in slags containing a volatile component. Metall. Mater. Trans. B, 1995, 26(3): 651,
CrossRef Google scholar
[[51]]
Mitchell A, Joshi S. The thermal characteristics of the electroslag process. Metall. Trans., 1973, 4(3): 631,
CrossRef Google scholar
[[52]]
Schneider R, Wiesinger V, Gelder S, Mitchell A, David D. Effect of different remelting parameters on slag temperature and energy consumption during ESR. ISIJ Int., 2022, 62(6): 1199,
CrossRef Google scholar
[[53]]
Hou D, Jiang ZH, Dong YW, Gong W, Cao YL, Cao HB. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel: Part-2 control of titanium and aluminum content. ISIJ Int., 2017, 57(8): 1410,
CrossRef Google scholar
[[54]]
Xuan C, Shibata H, Sukenaga S, Jönsson PG, Nakajima K. Wettability of Al2O3, MgO and Ti2O3 by liquid iron and steel. ISIJ Int., 2015, 55(9): 1882,
CrossRef Google scholar
[[55]]
Mukai K, Li ZS, Zeze M. Surface tension and wettability of liquid Fe–16 mass%Cr–O alloy with alumina. Mater. Trans., 2002, 43(7): 1724,
CrossRef Google scholar
[[56]]
Choi JY, Lee HG. Wetting of solid Al2O3 with molten CaO-Al2O3-SiO2. ISIJ Int., 2003, 43(9): 1348,
CrossRef Google scholar
[[57]]
Monaghan BJ, Abdeyazdan H, Dogan N, Rhamdhani MA, Longbottom RJ, Chapman MW. Effect of slag composition on wettability of oxide inclusions. ISIJ Int., 2015, 55(9): 1834,
CrossRef Google scholar
[[58]]
Ohta H, Suito H. Dispersion behavior of MgO, ZrO2, Al2O3, CaO–Al2O3 and MnO–SiO2 deoxidation particles during solidification of Fe–10mass%Ni alloy. ISIJ Int., 2006, 46(1): 22,
CrossRef Google scholar
[[59]]
Furukawa T, Saito N, Nakashima K. Evaluation of interfacial energy between molten Fe and Fe–18% Cr–9% Ni alloy and non-metallic inclusion-type oxides. ISIJ Int., 2021, 61(9): 2381,
CrossRef Google scholar
[[60]]
X.P. Guo, M. Tan, T. Li, et al., Formation mechanisms and three-dimensional characterization of composite inclusion of MnS–Al2O3 in high speed wheel steel, Mater. Charact., 197(2023), art. No. 112669.
[[61]]
Y.F. Qi, J. Li, C.B. Shi, H. Wang, and D.L. Zheng, Precipitation and growth of MnS inclusion in an austenitic hot-work die steel during ESR solidification process, Metall. Res. Technol., 116(2019), No. 3, art. No. 322.
[[62]]
S.C. Duan, J. Kang, J. Cho, M. Lee, W.Z. Mu, and J.H. Park, Manufacturing an ultra-low-sulfur CoCrFeMnNi high-entropy alloy by slagging through induction melting with ferroalloys feedstock, J. Alloys Compd., 928(2022), art. No. 167080.
[[63]]
Zeng J, Zhu CY, Wang WL, Li X. In situ observation of the MnS precipitation behavior in high-sulfur microalloyed steel under different cooling rates. Metall. Mater. Trans. B, 2020, 51(6): 2522,
CrossRef Google scholar
[[64]]
Xue ZL, Li N, Wang L, Song SQ, Liu DM, Huang A. A coupling model predicting the precipitation and growth of MnS inclusions in U75V high-carbon heavy rail steel. Metall. Mater. Trans. B, 2021, 52(6): 3860,
CrossRef Google scholar
[[65]]
D.M. Liu, Z.L. Xue, and S.Q. Song, Effect of manganese on the formation mechanism of nonmetallic inclusions in Fe–xMn–7Al–0.7C lightweight steel, Steel Res. Int., 94(2023), No. 1, art. No. 2200551.
[[66]]
Shin JH, Park JH. Modification of inclusions in molten steel by Mg-Ca transfer from top slag: Experimental confirmation of the ‘refractory-slag-metal-inclusion (ReSMI)’ multiphase reaction model. Metall. Mater. Trans. B, 2017, 48(6): 2820,
CrossRef Google scholar
[[67]]
Shi CB, Wang H, Li J. Effects of reoxidation of liquid steel and slag composition on the chemistry evolution of inclusions during electroslag remelting. Metall. Mater. Trans. B, 2018, 49(4): 1675,
CrossRef Google scholar
[[68]]
M.G. González-Solórzano, R. Morales, J.R. Ávila, C.R. Muñiz-Valdés, and A.N. Bastida, Alumina nucleation, growth kinetics, and morphology: A review, Steel Res. Int., 94(2023), No. 9, art. No. 2200678.
[[69]]
Shu QF, Visuri VV, Alatarvas T, Fabritius T. Model for inclusion precipitation kinetics during solidification of steel applications in MnS and TiN inclusions. Metall. Mater. Trans. B, 2020, 51(6): 2905,
CrossRef Google scholar
[[70]]
Zheng DL, Ma GJ, Li J, et al.. Effect of cerium on the primary carbides and inclusions in electroslag remelted M35 high speed steel. J. Mater. Res. Technol., 2023, 24: 8252,
CrossRef Google scholar
[[71]]
Yoshizawa M, Igarashi M, Nishizawa T. Effect of tungsten on the Ostwald ripening of M23C6 carbides in martensitic heat resistant steel. Tetsu-to-Hagane, 2005, 91(2): 272,
CrossRef Google scholar
[[72]]
Xiao X, Liu GQ, Hu BF, Wang JS, Ma WB. Coarsening behavior for M23C6 carbide in 12%Cr-reduced activation ferrite/martensite steel: Experimental study combined with DICTRA simulation. J. Mater. Sci., 2013, 48(16): 5410,
CrossRef Google scholar
[[73]]
J.P. Sanhueza, D. Rojas, J. García, et al., Computational modeling of the effect of B and W in the phase transformation of M23C6 carbides in 9 to 12 pct Cr martensitic/ferritic steels, Mater. Res. Express, 6(2019), No. 11, art. No. 1165d3.
[[74]]
Fraser ME, Mitchell A. Mass transfer in the electroslag process. Part1: Mass-transfer model. Ironmaking Steelmaking, 1976, 3(5): 279
[[75]]
Valdez M, Shannon GS, Sridhar S. The ability of slags to absorb solid oxide inclusions. ISIJ Int., 2006, 46(3): 450,
CrossRef Google scholar
[[76]]
Wen Y, Shu Q, Lin Y, Fabritius T. Effect of SiO2 content and mass ratio of CaO to Al2O3 on the viscosity and structure of CaO–Al2O3–B2O3–SiO2 slags. ISIJ Int., 2023, 63(1): 1,
CrossRef Google scholar
[[77]]
Jung IH, Van Ende MA. Computational thermodynamic calculations: FactSage from CALPHAD thermodynamic database to virtual process simulation. Metall. Mater. Trans. B, 2020, 51(5): 1851,
CrossRef Google scholar
[[78]]
Shi CB, Wang SJ, Li J, Cho JW. Non-metallic inclusions in electroslag remelting: A review. J. Iron Steel Res. Int., 2021, 28(12): 1483,
CrossRef Google scholar
[[79]]
Sigworth GK, Elliott JF. The thermodynamics of liquid dilute iron alloys. Met. Sci., 1974, 8(1): 298,
CrossRef Google scholar
[[80]]
Li GQ, Suito H. Electrochemical measurement of critical supersaturation in F–O–M (M=Al, Si, and Zr) and Fe–O–Al–M (M=C, Mn, Cr, Si, and Ti) melts by solid electrolyte galvanic cell. ISIJ Int., 1997, 37(8): 762,
CrossRef Google scholar
[[81]]
Kim TS, Lee SB, Park JH. Effect of tundish flux on compositional changes in non-metallic inclusions in stainless steel melts. ISIJ Int., 2021, 61(12): 2998,
CrossRef Google scholar
[[82]]
Hino M, Ito K. . Thermodynamic Data for Steelmaking, 2010 Sendai Tohoku University Press 259
[[83]]
Kishi M, Inoue R, Suito H. Thermodynamics of oxygen and nitrogen in liquid Fe-20mass%Cr alloy equilibrated with titania-based slags. ISIJ Int., 1994, 34(11): 859,
CrossRef Google scholar
[[84]]
Suito H, Inoue R. Thermodynamics on control of inclusions composition in ultra-clean steels. ISIJ Int., 1996, 36(5): 528,
CrossRef Google scholar
[[85]]
T.J. Wen, Q. Ren, L.F. Zhang, et al., Evolution of nonmetallic inclusions during the electroslag remelting process, Steel Res. Int., 92(2021), No. 6, art. No. 2000629.
[[86]]
T.F. Li, G.Q. Li, Z. Zhang, Y. Liu, and X.J. Wang, Fluoride vaporization and crystallization of CaF2–CaO–Al2O3–(La2O3) slag for vacuum electroslag remelting, Vacuum, 196(2022), art. No. 110807.
[[87]]
S.C. Duan and H.J. Guo, The methodology development for improving energy utilization and reducing fluoride pollution of the electroslag remelting process: A review, Steel Res. Int., 91(2020), No. 7, art. No. 1900634.
[[88]]
Wagner C. . Thermodynamics of Alloys, 1952 Cambridge, MA Addison-Wesley Press 47
[[89]]
Scheil E. Bemerkungen zur schichtkristallbildung. Int. J. Mater. Res., 1942, 34(3): 70,
CrossRef Google scholar
[[90]]
Choudhary SK, Ghosh A. Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ Int., 2009, 49(12): 1819,
CrossRef Google scholar
[[91]]
Hou D, Jiang ZH, Dong YW, Li Y, Gong W, Liu FB. Mass transfer model of desulfurization in the electroslag remelting process. Metall. Mater. Trans. B, 2017, 48(3): 1885,
CrossRef Google scholar
[[92]]
Wang HM, Zhang TW, Zhu H, Li GR, Yan YQ, Wang JH. Effect of B2O3 on melting temperature, viscosity and desulfurization capacity of CaO-based refining flux. ISIJ Int., 2011, 51(5): 702,
CrossRef Google scholar
[[93]]
Zhu QT, Li J, Shi CB, Yu WT. Effect of electroslag remelting on carbides in 8Cr13MoV martensitic stainless steel. Int. J. Miner. Metall. Mater., 2015, 22(11): 1149,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/