Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process

Shengchao Duan, Min Joo Lee, Yao Su, Wangzhong Mu, Dong Soo Kim, Joo Hyun Park

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (7) : 1525-1539.

International Journal of Minerals, Metallurgy, and Materials All Journals
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (7) : 1525-1539. DOI: 10.1007/s12613-024-2905-9
Research Article

Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process

Author information +
History +

Abstract

In combination with theoretical calculations, experiments were conducted to investigate the evolution behavior of nonmetallic inclusions (NMIs) during the manufacture of large-scale heat-resistant steel ingots using 9CrMoCoB heat-resistant steel and CaF2–CaO–Al2O3–SiO2–B2O3 electroslag remelting (ESR)-type slag in an 80-t industrial ESR furnace. The main types of NMI in the consumable electrode comprised pure alumina, a multiphase oxide consisting of an Al2O3 core and liquid CaO–Al2O3–SiO2–MnO shell, and M23C6 carbides with an MnS core. The Al2O3 and MnS inclusions had higher precipitation temperatures than the M23C6-type carbide under equilibrium and nonequilibrium solidification processes. Therefore, inclusions can act as nucleation sites for carbide layer precipitation. The ESR process completely removed the liquid CaO–Al2O3–SiO2–MnO oxide and MnS inclusion with a carbide shell, and only the Al2O3 inclusions and Al2O3 core with a carbide shell occupied the remelted ingot. The M23C6-type carbides in steel were determined as Cr23C6 based on the analysis of transmission electron microscopy results. The substitution of Cr with W, Fe, or/and Mo in the Cr23C6 lattice caused slight changes in the lattice parameter of the Cr23C6 carbide. Therefore, Cr21.34Fe1.66C6, (Cr19W4)C6, Cr18.4Mo4.6C6, and Cr16Fe5Mo2C6 can match the fraction pattern of Cr23C6 carbide. The Al2O3 inclusions in the remelted ingot formed due to the reduction of CaO, SiO2, and MnO components in the liquid inclusion. The increased Al content in liquid steel or the higher supersaturation degree of Al2O3 precipitation in the remelted ingot than that in the electrode can be attributed to the evaporation of CaF2 and the increase in CaO content in the ESR-type slag.

Cite this article

Download citation ▾
Shengchao Duan, Min Joo Lee, Yao Su, Wangzhong Mu, Dong Soo Kim, Joo Hyun Park. Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(7): 1525‒1539 https://doi.org/10.1007/s12613-024-2905-9
This is a preview of subscription content, contact us for subscripton.

References

[1]
HoriuchiT, IgarashiM, AbeF. Improved utilization of added B in 9Cr heat-resistant steels containing W. ISIJ Int., 2002, 42: S67
CrossRef Google scholar
[2]
MasuyamaF. History of power plants and progress in heat resistant steels. ISIJ Int., 2001, 41(6): 612
CrossRef Google scholar
[3]
YanW, WangW, ShanYY, YangK, ShaW. 9-12Cr Heat-Resistant Steels, 2015ChamSpringer International Publishing
CrossRef Google scholar
[4]
F. Abe, Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants, Sci. Technol. Adv. Mater., 9(2008), No. 1, art. No. 013002.
[5]
HuXB, LiL, WuXC, ZhangM. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium. Int. J. Fatigue, 2006, 28(3): 175
CrossRef Google scholar
[6]
ZhouXS, LiuCX, YuLM, LiuYC, LiHJ. Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review. J. Mater. Sci. Technol., 2015, 31(3): 235
CrossRef Google scholar
[7]
ZhouYH, LiuYC, ZhouXS, et al. . Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review. J. Mater. Sci. Technol., 2017, 33(12): 1448
CrossRef Google scholar
[8]
KluehRL. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. Int. Mater. Rev., 2005, 50(5): 287
CrossRef Google scholar
[9]
Z. Liu, X.T. Wang, and C. Dong, Effect of boron on G115 martensitic heat resistant steel during aging at 650°C, Mater. Sci. Eng. A, 787(2020), art. No. 139529.
[10]
M. Sharma, I. Ortlepp, and W. Bleck, Boron in heat-treatable steels: A review, Steel Res. Int., 90(2019), No. 11, art. No. 1900133.
[11]
D.S. Kim, G.J. Lee, M.B. Lee, J.I. Hur, and J.W. Lee, Manufacturing of 9CrMoCoB steel of large ingot with homogeneity by ESR process, IOP Conf. Ser. Mater. Sci. Eng., 143(2016), art. No. 012002.
[12]
L.Z. Peng, Z.H. Jiang, and X. Geng, Design of ESR slag for remelting 9CrMoCoB steel through experiments and thermodynamic calculations, Calphad, 70(2020), art. No. 101782.
[13]
DuanSC, ParkJH. Comparison of oxidation behavior of various reactive elements in alloys during electroslag remelting (ESR) process: An overview. ISIJ Int., 2022, 62(8): 1561
CrossRef Google scholar
[14]
DuanSC, LeeMJ, KimDS, ParkJH. Oxidation behavior of boron in 9CrMoCoB steel by CaF2–CaO–Al2O3–SiO2–B2O3 electroslag remelting (ESR) type slag. J. Mater. Res. Technol., 2022, 17: 574
CrossRef Google scholar
[15]
J.H. Park and Y. Kang, Inclusions in stainless steels–A review, Steel Res. Int., 88(2017), No. 12, art. No. 1700130.
[16]
ParkJH, TodorokiH. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ Int., 2010, 50(10): 1333
CrossRef Google scholar
[17]
ParkJH, ZhangLF. Kinetic modeling of nonmetallic inclusions behavior in molten steel: A review. Metall. Mater. Trans. B, 2020, 51(6): 2453
CrossRef Google scholar
[18]
YangSF, YangSL, QuJL, et al. . Inclusions in wrought superalloys: A review. J. Iron Steel Res. Int., 2021, 28(8): 921
CrossRef Google scholar
[19]
FindleyKO, EvansJL, SaxenaA. A critical assessment of fatigue crack nucleation and growth models for Ni- and Ni, Fe-based superalloys. Int. Mater. Rev., 2011, 56(1): 49
CrossRef Google scholar
[20]
HoltRT, WallaceW. Impurities and trace elements in nickel-base superalloys. Int. Met. Rev., 1976, 21(1): 1
CrossRef Google scholar
[21]
GaoXY, ZhangL, QuXH, ChenXW, LuanYF. Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting. Int. J. Miner. Metall. Mater., 2020, 27(11): 1551
CrossRef Google scholar
[22]
J. Wang, L.Z. Wang, J.Q. Li, C.Y. Chen, S.F. Yang, and X. Li, Effects of aluminum and titanium additions on the formation of nonmetallic inclusions in nickel-based superalloys, J. Alloys Compd., 906(2022), art. No. 164281.
[23]
ShiAJ, WangZ, ShiCB, GuoL, GuoCQ, GuoZC. Supergravity-induced separation of oxide and nitride inclusions from inconel 718 superalloy melt. ISIJ Int., 2020, 60(2): 205
CrossRef Google scholar
[24]
Al-JarbaKA, FuchsGE. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy. Mater. Sci. Eng. A, 2004, 373(1–2): 255
CrossRef Google scholar
[25]
HeLZ, ZhengQ, SunXF, et al. . Effect of carbides on the creep properties of a Ni-base superalloy M963. Mater. Sci. Eng. A, 2005, 397(1–2): 297
CrossRef Google scholar
[26]
LiuLR, JinT, ZhaoNR, SunXF, GuanHR, HuZQ. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy. Mater. Sci. Eng. A, 2003, 361(1–2): 191
CrossRef Google scholar
[27]
YangSL, YangSF, LiuW, LiJS, GaoJG, WangY. Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy. Int. J. Miner. Metall. Mater., 2023, 30(5): 939
CrossRef Google scholar
[28]
HaVT, JungWS. Niobium carbo-nitride precipitation behavior in a high nitrogen 15Cr-15Ni heat resistant austenitic stainless steel. Met. Mater. Int., 2011, 17(5): 713
CrossRef Google scholar
[29]
SunWR, GuoSR, LuDZ, HuZO. Effect of sulfur on the solidification and segregation in Inconel 718 alloy. Mater. Lett., 1997, 31(3–6): 195
CrossRef Google scholar
[30]
WhelanEP, GrzedzielskiMS. H-phase sulphocarbides and sulphur in nickel-base superalloys. Met. Technol., 1974, 1(1): 186
CrossRef Google scholar
[31]
ChenXC, ShiCB, GuoHJ, WangF, RenH, FengD. Investigation of oxide inclusions and primary carbonitrides in inconel 718 superalloy refined through electroslag remelting process. Metall. Mater. Trans. B, 2012, 43(6): 1596
CrossRef Google scholar
[32]
ShiX, DuanSC, YangWS, MaoMT, GuoHJ, GuoJ. Effects of remelting current on structure, composition, microsegregation, and inclusions in inconel 718 electroslag remelting ingots. Metall. Mater. Trans. B, 2019, 50(6): 3072
CrossRef Google scholar
[33]
DuanSC, ShiX, WangF, et al. . Investigation of desulfurization of Inconel 718 superalloys by ESR type slags with different TiO2 content. J. Mater. Res. Technol., 2019, 8(3): 2508
CrossRef Google scholar
[34]
SakurayaK, OkadaH, AbeF. BN type inclusions formed in high Cr ferritic heat resistant steel. Energy Mater., 2006, 1(3): 158
CrossRef Google scholar
[35]
LiY, LiuC, ZhangT, JiangM, PengC. Inclusions modification in heat resistant steel containing rare earth elements. Ironmaking Steelmaking, 2018, 45(1): 76
CrossRef Google scholar
[36]
ZhangL, HouYH, LiYC, XiangZL, WangEG. Size and type of inclusions in Fe–Cr–Co Heat–resistant steel and elevated-temperature strength under the effect of electromagnetic stirring. ISIJ Int., 2019, 59(6): 1049
CrossRef Google scholar
[37]
LiZB. Electroslag Metallurgy Theory and Practice, 2010BeijingMetallurgical Industry Press66
[38]
JiangZH. Electroslag Metallurgy, 2015BeijingScience Press
[39]
A. Kharicha, E. Karimi-Sibaki, M.H. Wu, A. Ludwig, and J. Bohacek, Review on modeling and simulation of electroslag remelting, Steel Res. Int., 89(2018), No. 1, art. No. 1700100.
[40]
FuJ, ZhuJ. Changes in oxide inclusions during electroslag remelting. Acta Metall. Sin., 1964, 7(3): 250
[41]
MitchellA, BellM. On the origin of oxide inclusions in ingots made by the electroslag process. Can. Metall. Q., 1972, 11(2): 363
CrossRef Google scholar
[42]
DongYW, JiangZH, CaoYL, YuA, HouD. Effect of slag on inclusions during electroslag remelting process of die steel. Metall. Mater. Trans. B, 2014, 45(4): 1315
CrossRef Google scholar
[43]
WangQ, WangRT, HeZ, LiGQ, LiBK, LiHB. Numerical analysis of inclusion motion behavior in electroslag remelting process. Int. J. Heat Mass Transf., 2018, 125: 1333
CrossRef Google scholar
[44]
X.C. Huang, B.K. Li, Z.Q. Liu, M.Z. Li, and F.S. Qi, Modeling of fluid flow, heat transfer and inclusion removal in electroslag remelting process with a rotating electrode, Int. J. Heat Mass Transf., 163(2020), art. No. 120473.
[45]
WangSJ, ShiCB, LiangYJ, WanXX, ZhuX. Evolution and formation of Non-metallic inclusions during electroslag remelting of a heat-resistant steel for ultra-supercritical power plants. Metall. Mater. Trans. B, 2022, 53(5): 3095
CrossRef Google scholar
[46]
Y. Zhao, C.B. Shi, S.J. Wang, P. Ren, and J. Li, Reoxidation of liquid steel and evolution of inclusions during protective atmosphere electroslag remelting of Ce-containing heat-resistant stainless steel, J. Iron Steel Res. Int., (2023). DOI: https://doi.org/10.1007/s42243-023-01092-3
[47]
ParkJH, KimDJ, MinDJ. Characterization of non-metallic inclusions in high-manganese and aluminum-alloyed austenitic steels. Metall. Mater. Trans. A, 2012, 43(7): 2316
CrossRef Google scholar
[48]
ParkJH, MinDJ. Thermodynamics of fluoride vaporisation from slags containing CaF2 at 1773 K. Steel Res. Int., 2004, 75(12): 807
CrossRef Google scholar
[49]
LiuY, WangY, LiGQ, YuanC, LuR, LiBK. Investigation on the structure, fluoride vaporization and crystallization behavior of CaF2–CaO–Al2O3–(SiO2) slag for electroslag remelting. J. Therm. Anal. Calorim., 2020, 139(2): 923
CrossRef Google scholar
[50]
DaiCH, ZhangXP, ShuiL. A new method for measuring activities in slags containing a volatile component. Metall. Mater. Trans. B, 1995, 26(3): 651
CrossRef Google scholar
[51]
MitchellA, JoshiS. The thermal characteristics of the electroslag process. Metall. Trans., 1973, 4(3): 631
CrossRef Google scholar
[52]
SchneiderR, WiesingerV, GelderS, MitchellA, DavidD. Effect of different remelting parameters on slag temperature and energy consumption during ESR. ISIJ Int., 2022, 62(6): 1199
CrossRef Google scholar
[53]
HouD, JiangZH, DongYW, GongW, CaoYL, CaoHB. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel: Part-2 control of titanium and aluminum content. ISIJ Int., 2017, 57(8): 1410
CrossRef Google scholar
[54]
XuanC, ShibataH, SukenagaS, JönssonPG, NakajimaK. Wettability of Al2O3, MgO and Ti2O3 by liquid iron and steel. ISIJ Int., 2015, 55(9): 1882
CrossRef Google scholar
[55]
MukaiK, LiZS, ZezeM. Surface tension and wettability of liquid Fe–16 mass%Cr–O alloy with alumina. Mater. Trans., 2002, 43(7): 1724
CrossRef Google scholar
[56]
ChoiJY, LeeHG. Wetting of solid Al2O3 with molten CaO-Al2O3-SiO2. ISIJ Int., 2003, 43(9): 1348
CrossRef Google scholar
[57]
MonaghanBJ, AbdeyazdanH, DoganN, RhamdhaniMA, LongbottomRJ, ChapmanMW. Effect of slag composition on wettability of oxide inclusions. ISIJ Int., 2015, 55(9): 1834
CrossRef Google scholar
[58]
OhtaH, SuitoH. Dispersion behavior of MgO, ZrO2, Al2O3, CaO–Al2O3 and MnO–SiO2 deoxidation particles during solidification of Fe–10mass%Ni alloy. ISIJ Int., 2006, 46(1): 22
CrossRef Google scholar
[59]
FurukawaT, SaitoN, NakashimaK. Evaluation of interfacial energy between molten Fe and Fe–18% Cr–9% Ni alloy and non-metallic inclusion-type oxides. ISIJ Int., 2021, 61(9): 2381
CrossRef Google scholar
[60]
X.P. Guo, M. Tan, T. Li, et al., Formation mechanisms and three-dimensional characterization of composite inclusion of MnS–Al2O3 in high speed wheel steel, Mater. Charact., 197(2023), art. No. 112669.
[61]
Y.F. Qi, J. Li, C.B. Shi, H. Wang, and D.L. Zheng, Precipitation and growth of MnS inclusion in an austenitic hot-work die steel during ESR solidification process, Metall. Res. Technol., 116(2019), No. 3, art. No. 322.
[62]
S.C. Duan, J. Kang, J. Cho, M. Lee, W.Z. Mu, and J.H. Park, Manufacturing an ultra-low-sulfur CoCrFeMnNi high-entropy alloy by slagging through induction melting with ferroalloys feedstock, J. Alloys Compd., 928(2022), art. No. 167080.
[63]
ZengJ, ZhuCY, WangWL, LiX. In situ observation of the MnS precipitation behavior in high-sulfur microalloyed steel under different cooling rates. Metall. Mater. Trans. B, 2020, 51(6): 2522
CrossRef Google scholar
[64]
XueZL, LiN, WangL, SongSQ, LiuDM, HuangA. A coupling model predicting the precipitation and growth of MnS inclusions in U75V high-carbon heavy rail steel. Metall. Mater. Trans. B, 2021, 52(6): 3860
CrossRef Google scholar
[65]
D.M. Liu, Z.L. Xue, and S.Q. Song, Effect of manganese on the formation mechanism of nonmetallic inclusions in Fe–xMn–7Al–0.7C lightweight steel, Steel Res. Int., 94(2023), No. 1, art. No. 2200551.
[66]
ShinJH, ParkJH. Modification of inclusions in molten steel by Mg-Ca transfer from top slag: Experimental confirmation of the ‘refractory-slag-metal-inclusion (ReSMI)’ multiphase reaction model. Metall. Mater. Trans. B, 2017, 48(6): 2820
CrossRef Google scholar
[67]
ShiCB, WangH, LiJ. Effects of reoxidation of liquid steel and slag composition on the chemistry evolution of inclusions during electroslag remelting. Metall. Mater. Trans. B, 2018, 49(4): 1675
CrossRef Google scholar
[68]
M.G. González-Solórzano, R. Morales, J.R. Ávila, C.R. Muñiz-Valdés, and A.N. Bastida, Alumina nucleation, growth kinetics, and morphology: A review, Steel Res. Int., 94(2023), No. 9, art. No. 2200678.
[69]
ShuQF, VisuriVV, AlatarvasT, FabritiusT. Model for inclusion precipitation kinetics during solidification of steel applications in MnS and TiN inclusions. Metall. Mater. Trans. B, 2020, 51(6): 2905
CrossRef Google scholar
[70]
ZhengDL, MaGJ, LiJ, et al. . Effect of cerium on the primary carbides and inclusions in electroslag remelted M35 high speed steel. J. Mater. Res. Technol., 2023, 24: 8252
CrossRef Google scholar
[71]
YoshizawaM, IgarashiM, NishizawaT. Effect of tungsten on the Ostwald ripening of M23C6 carbides in martensitic heat resistant steel. Tetsu-to-Hagane, 2005, 91(2): 272
CrossRef Google scholar
[72]
XiaoX, LiuGQ, HuBF, WangJS, MaWB. Coarsening behavior for M23C6 carbide in 12%Cr-reduced activation ferrite/martensite steel: Experimental study combined with DICTRA simulation. J. Mater. Sci., 2013, 48(16): 5410
CrossRef Google scholar
[73]
J.P. Sanhueza, D. Rojas, J. García, et al., Computational modeling of the effect of B and W in the phase transformation of M23C6 carbides in 9 to 12 pct Cr martensitic/ferritic steels, Mater. Res. Express, 6(2019), No. 11, art. No. 1165d3.
[74]
FraserME, MitchellA. Mass transfer in the electroslag process. Part1: Mass-transfer model. Ironmaking Steelmaking, 1976, 3(5): 279
[75]
ValdezM, ShannonGS, SridharS. The ability of slags to absorb solid oxide inclusions. ISIJ Int., 2006, 46(3): 450
CrossRef Google scholar
[76]
WenY, ShuQ, LinY, FabritiusT. Effect of SiO2 content and mass ratio of CaO to Al2O3 on the viscosity and structure of CaO–Al2O3–B2O3–SiO2 slags. ISIJ Int., 2023, 63(1): 1
CrossRef Google scholar
[77]
JungIH, Van EndeMA. Computational thermodynamic calculations: FactSage from CALPHAD thermodynamic database to virtual process simulation. Metall. Mater. Trans. B, 2020, 51(5): 1851
CrossRef Google scholar
[78]
ShiCB, WangSJ, LiJ, ChoJW. Non-metallic inclusions in electroslag remelting: A review. J. Iron Steel Res. Int., 2021, 28(12): 1483
CrossRef Google scholar
[79]
SigworthGK, ElliottJF. The thermodynamics of liquid dilute iron alloys. Met. Sci., 1974, 8(1): 298
CrossRef Google scholar
[80]
LiGQ, SuitoH. Electrochemical measurement of critical supersaturation in F–O–M (M=Al, Si, and Zr) and Fe–O–Al–M (M=C, Mn, Cr, Si, and Ti) melts by solid electrolyte galvanic cell. ISIJ Int., 1997, 37(8): 762
CrossRef Google scholar
[81]
KimTS, LeeSB, ParkJH. Effect of tundish flux on compositional changes in non-metallic inclusions in stainless steel melts. ISIJ Int., 2021, 61(12): 2998
CrossRef Google scholar
[82]
HinoM, ItoK. Thermodynamic Data for Steelmaking, 2010SendaiTohoku University Press259
[83]
KishiM, InoueR, SuitoH. Thermodynamics of oxygen and nitrogen in liquid Fe-20mass%Cr alloy equilibrated with titania-based slags. ISIJ Int., 1994, 34(11): 859
CrossRef Google scholar
[84]
SuitoH, InoueR. Thermodynamics on control of inclusions composition in ultra-clean steels. ISIJ Int., 1996, 36(5): 528
CrossRef Google scholar
[85]
T.J. Wen, Q. Ren, L.F. Zhang, et al., Evolution of nonmetallic inclusions during the electroslag remelting process, Steel Res. Int., 92(2021), No. 6, art. No. 2000629.
[86]
T.F. Li, G.Q. Li, Z. Zhang, Y. Liu, and X.J. Wang, Fluoride vaporization and crystallization of CaF2–CaO–Al2O3–(La2O3) slag for vacuum electroslag remelting, Vacuum, 196(2022), art. No. 110807.
[87]
S.C. Duan and H.J. Guo, The methodology development for improving energy utilization and reducing fluoride pollution of the electroslag remelting process: A review, Steel Res. Int., 91(2020), No. 7, art. No. 1900634.
[88]
WagnerC. Thermodynamics of Alloys, 1952Cambridge, MAAddison-Wesley Press47
[89]
ScheilE. Bemerkungen zur schichtkristallbildung. Int. J. Mater. Res., 1942, 34(3): 70
CrossRef Google scholar
[90]
ChoudharySK, GhoshA. Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ Int., 2009, 49(12): 1819
CrossRef Google scholar
[91]
HouD, JiangZH, DongYW, LiY, GongW, LiuFB. Mass transfer model of desulfurization in the electroslag remelting process. Metall. Mater. Trans. B, 2017, 48(3): 1885
CrossRef Google scholar
[92]
WangHM, ZhangTW, ZhuH, LiGR, YanYQ, WangJH. Effect of B2O3 on melting temperature, viscosity and desulfurization capacity of CaO-based refining flux. ISIJ Int., 2011, 51(5): 702
CrossRef Google scholar
[93]
ZhuQT, LiJ, ShiCB, YuWT. Effect of electroslag remelting on carbides in 8Cr13MoV martensitic stainless steel. Int. J. Miner. Metall. Mater., 2015, 22(11): 1149
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/