Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process
Shengchao Duan, Min Joo Lee, Yao Su, Wangzhong Mu, Dong Soo Kim, Joo Hyun Park
Evolution of nonmetallic inclusions in 80-t 9CrMoCoB large-scale ingots during electroslag remelting process
In combination with theoretical calculations, experiments were conducted to investigate the evolution behavior of nonmetallic inclusions (NMIs) during the manufacture of large-scale heat-resistant steel ingots using 9CrMoCoB heat-resistant steel and CaF2–CaO–Al2O3–SiO2–B2O3 electroslag remelting (ESR)-type slag in an 80-t industrial ESR furnace. The main types of NMI in the consumable electrode comprised pure alumina, a multiphase oxide consisting of an Al2O3 core and liquid CaO–Al2O3–SiO2–MnO shell, and M23C6 carbides with an MnS core. The Al2O3 and MnS inclusions had higher precipitation temperatures than the M23C6-type carbide under equilibrium and nonequilibrium solidification processes. Therefore, inclusions can act as nucleation sites for carbide layer precipitation. The ESR process completely removed the liquid CaO–Al2O3–SiO2–MnO oxide and MnS inclusion with a carbide shell, and only the Al2O3 inclusions and Al2O3 core with a carbide shell occupied the remelted ingot. The M23C6-type carbides in steel were determined as Cr23C6 based on the analysis of transmission electron microscopy results. The substitution of Cr with W, Fe, or/and Mo in the Cr23C6 lattice caused slight changes in the lattice parameter of the Cr23C6 carbide. Therefore, Cr21.34Fe1.66C6, (Cr19W4)C6, Cr18.4Mo4.6C6, and Cr16Fe5Mo2C6 can match the fraction pattern of Cr23C6 carbide. The Al2O3 inclusions in the remelted ingot formed due to the reduction of CaO, SiO2, and MnO components in the liquid inclusion. The increased Al content in liquid steel or the higher supersaturation degree of Al2O3 precipitation in the remelted ingot than that in the electrode can be attributed to the evaporation of CaF2 and the increase in CaO content in the ESR-type slag.
nonmetallic inclusion / heat-resistant steel / electroslag remelting / M23C6 carbide / MnS inclusion / supersaturation degree
[[1]] |
|
[[2]] |
|
[[3]] |
|
[[4]] |
F. Abe, Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants, Sci. Technol. Adv. Mater., 9(2008), No. 1, art. No. 013002.
|
[[5]] |
|
[[6]] |
|
[[7]] |
|
[[8]] |
|
[[9]] |
Z. Liu, X.T. Wang, and C. Dong, Effect of boron on G115 martensitic heat resistant steel during aging at 650°C, Mater. Sci. Eng. A, 787(2020), art. No. 139529.
|
[[10]] |
M. Sharma, I. Ortlepp, and W. Bleck, Boron in heat-treatable steels: A review, Steel Res. Int., 90(2019), No. 11, art. No. 1900133.
|
[[11]] |
D.S. Kim, G.J. Lee, M.B. Lee, J.I. Hur, and J.W. Lee, Manufacturing of 9CrMoCoB steel of large ingot with homogeneity by ESR process, IOP Conf. Ser. Mater. Sci. Eng., 143(2016), art. No. 012002.
|
[[12]] |
L.Z. Peng, Z.H. Jiang, and X. Geng, Design of ESR slag for remelting 9CrMoCoB steel through experiments and thermodynamic calculations, Calphad, 70(2020), art. No. 101782.
|
[[13]] |
|
[[14]] |
|
[[15]] |
J.H. Park and Y. Kang, Inclusions in stainless steels–A review, Steel Res. Int., 88(2017), No. 12, art. No. 1700130.
|
[[16]] |
|
[[17]] |
|
[[18]] |
|
[[19]] |
|
[[20]] |
|
[[21]] |
|
[[22]] |
J. Wang, L.Z. Wang, J.Q. Li, C.Y. Chen, S.F. Yang, and X. Li, Effects of aluminum and titanium additions on the formation of nonmetallic inclusions in nickel-based superalloys, J. Alloys Compd., 906(2022), art. No. 164281.
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
|
[[31]] |
|
[[32]] |
|
[[33]] |
|
[[34]] |
|
[[35]] |
|
[[36]] |
|
[[37]] |
|
[[38]] |
|
[[39]] |
A. Kharicha, E. Karimi-Sibaki, M.H. Wu, A. Ludwig, and J. Bohacek, Review on modeling and simulation of electroslag remelting, Steel Res. Int., 89(2018), No. 1, art. No. 1700100.
|
[[40]] |
|
[[41]] |
|
[[42]] |
|
[[43]] |
|
[[44]] |
X.C. Huang, B.K. Li, Z.Q. Liu, M.Z. Li, and F.S. Qi, Modeling of fluid flow, heat transfer and inclusion removal in electroslag remelting process with a rotating electrode, Int. J. Heat Mass Transf., 163(2020), art. No. 120473.
|
[[45]] |
|
[[46]] |
Y. Zhao, C.B. Shi, S.J. Wang, P. Ren, and J. Li, Reoxidation of liquid steel and evolution of inclusions during protective atmosphere electroslag remelting of Ce-containing heat-resistant stainless steel, J. Iron Steel Res. Int., (2023). DOI: https://doi.org/10.1007/s42243-023-01092-3
|
[[47]] |
|
[[48]] |
|
[[49]] |
|
[[50]] |
|
[[51]] |
|
[[52]] |
|
[[53]] |
|
[[54]] |
|
[[55]] |
|
[[56]] |
|
[[57]] |
|
[[58]] |
|
[[59]] |
|
[[60]] |
X.P. Guo, M. Tan, T. Li, et al., Formation mechanisms and three-dimensional characterization of composite inclusion of MnS–Al2O3 in high speed wheel steel, Mater. Charact., 197(2023), art. No. 112669.
|
[[61]] |
Y.F. Qi, J. Li, C.B. Shi, H. Wang, and D.L. Zheng, Precipitation and growth of MnS inclusion in an austenitic hot-work die steel during ESR solidification process, Metall. Res. Technol., 116(2019), No. 3, art. No. 322.
|
[[62]] |
S.C. Duan, J. Kang, J. Cho, M. Lee, W.Z. Mu, and J.H. Park, Manufacturing an ultra-low-sulfur CoCrFeMnNi high-entropy alloy by slagging through induction melting with ferroalloys feedstock, J. Alloys Compd., 928(2022), art. No. 167080.
|
[[63]] |
|
[[64]] |
|
[[65]] |
D.M. Liu, Z.L. Xue, and S.Q. Song, Effect of manganese on the formation mechanism of nonmetallic inclusions in Fe–xMn–7Al–0.7C lightweight steel, Steel Res. Int., 94(2023), No. 1, art. No. 2200551.
|
[[66]] |
|
[[67]] |
|
[[68]] |
M.G. González-Solórzano, R. Morales, J.R. Ávila, C.R. Muñiz-Valdés, and A.N. Bastida, Alumina nucleation, growth kinetics, and morphology: A review, Steel Res. Int., 94(2023), No. 9, art. No. 2200678.
|
[[69]] |
|
[[70]] |
|
[[71]] |
|
[[72]] |
|
[[73]] |
J.P. Sanhueza, D. Rojas, J. García, et al., Computational modeling of the effect of B and W in the phase transformation of M23C6 carbides in 9 to 12 pct Cr martensitic/ferritic steels, Mater. Res. Express, 6(2019), No. 11, art. No. 1165d3.
|
[[74]] |
|
[[75]] |
|
[[76]] |
|
[[77]] |
|
[[78]] |
|
[[79]] |
|
[[80]] |
|
[[81]] |
|
[[82]] |
|
[[83]] |
|
[[84]] |
|
[[85]] |
T.J. Wen, Q. Ren, L.F. Zhang, et al., Evolution of nonmetallic inclusions during the electroslag remelting process, Steel Res. Int., 92(2021), No. 6, art. No. 2000629.
|
[[86]] |
T.F. Li, G.Q. Li, Z. Zhang, Y. Liu, and X.J. Wang, Fluoride vaporization and crystallization of CaF2–CaO–Al2O3–(La2O3) slag for vacuum electroslag remelting, Vacuum, 196(2022), art. No. 110807.
|
[[87]] |
S.C. Duan and H.J. Guo, The methodology development for improving energy utilization and reducing fluoride pollution of the electroslag remelting process: A review, Steel Res. Int., 91(2020), No. 7, art. No. 1900634.
|
[[88]] |
|
[[89]] |
|
[[90]] |
|
[[91]] |
|
[[92]] |
|
[[93]] |
|
/
〈 | 〉 |