Alkyl chain modulation of asymmetric hexacyclic fused acceptor synergistically with wide bandgap third component for high efficiency ternary organic solar cells
Shufang Li, Huilan Guan, Can Zhu, Chaoyuan Sun, Qingya Wei, Jun Yuan, Yingping Zou
Alkyl chain modulation of asymmetric hexacyclic fused acceptor synergistically with wide bandgap third component for high efficiency ternary organic solar cells
Herein, two asymmetric hexacyclic fused small molecule acceptors (SMAs), namely BP4F-HU and BP4F-UU, were synthesized. The elongated outside chains in the BP4F-UU molecule played a crucial role in optimizing the morphology of blend film, thereby improving charge mobility and reducing energy loss within the corresponding film. Notably, the PM6:BP4F-UU device exhibited a higher open-circuit voltage (V oc) of 0.878 V compared to the PM6:BP4F-HU device with a V oc of 0.863 V. Further, a new wide bandgap SMA named BTP-TA was designed and synthesized as the third component to the PM6:BP4F-UU host binary devices, which showed an ideal complementary absorption spectrum in PM6:BP4F-UU system. In addition, BTP-TA can achieve efficient intermolecular energy transfer to BP4F-UU by fluorescence resonance energy transfer (FRET) pathway, due to the good overlap between the photoluminescence (PL) spectrum of BTP-TA and the absorption region of BP4F-UU. Consequently, ternary devices with 15wt% BTP-TA exhibits broader photon utilization, optimal blend morphology, and reduced charge recombination compared to the corresponding binary devices. Consequently, PM6:BP4F-UU:BTP-TA ternary device achieved an optimal power conversion efficiency (PCE) of 17.83% with simultaneously increased V oc of 0.905 V, short-circuit current density (J sc) of 26.14 mA/cm2, and fill factor (FF) of 75.38%.
asymmetric hexacyclic acceptor / outside chain / wide bandgap acceptor / ternary organic solar cells
[[1]] |
|
[[2]] |
|
[[3]] |
|
[[4]] |
|
[[5]] |
|
[[6]] |
S.N. Bao, H. Yang, H.Y. Fan, et al., Volatilizable solid additive-assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80, Adv. Mater., 33(2021), No. 48, art. No. 2105301.
|
[[7]] |
X.J. Chen, D. Wang, Z.K. Wang, et al., 18.02% efficiency ternary organic solar cells with a small-molecular donor third component, Chem. Eng. J., 424(2021), art. No. 130397.
|
[[8]] |
Y. Cui, Y. Xu, H.F. Yao, et al., Single-junction organic photovoltaic cell with 19% efficiency, Adv. Mater., 33(2021), No. 41, art. No. 2102420.
|
[[9]] |
L.Z. Liu, S.Y. Chen, Y.Y. Qu, et al., Nanographene-osmapentalyne complexes as a cathode interlayer in organic solar cells enhance efficiency over 18%, Adv. Mater., 33(2021), No. 30, art. No. 2101279.
|
[[10]] |
|
[[11]] |
G.U. Kim, C. Sun, D. Lee, et al., Effect of the selective halogenation of small molecule acceptors on the blend morphology and voltage loss of high-performance solar cells, Adv. Funct. Mater., 32(2022), No. 25, art. No. 2201150.
|
[[12]] |
G.L. Cai, Z. Chen, X.X. Xia, et al., Pushing the efficiency of high open-circuit voltage binary organic solar cells by vertical morphology tuning, Adv. Sci., 9(2022), No. 14, art. No. 2200578.
|
[[13]] |
|
[[14]] |
Z.C. Zhou, W.R. Liu, G.Q. Zhou, et al., Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation, Adv. Mater., 32(2020), No. 4, art. No. 1906324.
|
[[15]] |
Y. Cui, H.F. Yao, J.Q. Zhang, et al., Single-junction organic photovoltaic cells with approaching 18% efficiency, Adv. Mater., 32(2020), No. 19, art. No. 1908205.
|
[[16]] |
|
[[17]] |
|
[[18]] |
|
[[19]] |
F. Liu, L. Zhou, W.R. Liu, et al., Organic solar cells with 18% efficiency enabled by an alloy acceptor: A two-in-one strategy, Adv. Mater., 33(2021), No. 27, art. No. 2100830.
|
[[20]] |
Y.H. Cai, Y. Li, R. Wang, et al., A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%, Adv. Mater., 33(2021), No. 33, art. No. 2101733.
|
[[21]] |
T. Zhang, C.B. An, P.Q. Bi, et al., A thiadiazole-based conjugated polymer with ultradeep HOMO level and strong electroluminescence enables 18.6% efficiency in organic solar cell, Adv. Energy Mater., 11(2021), No. 35, art. No. 2101705.
|
[[22]] |
G.C. Liu, R.X. Xia, Q.R. Huang, et al., Tandem organic solar cells with 18.7% efficiency enabled by suppressing the charge recombination in front sub-cell, Adv. Funct. Mater., 31(2021), No. 29, art. No. 2103283.
|
[[23]] |
J.Q. Wang, Z. Zheng, Y.F. Zu, et al., A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control, Adv. Mater., 33(2021), No. 39, art. No. 2102787.
|
[[24]] |
|
[[25]] |
X.J. Zheng, L.J. Zuo, F. Zhao, et al., High-efficiency ITO-free organic photovoltaics with superior flexibility and upscalability, Adv. Mater., 34(2022), No. 17, art. No. 2200044.
|
[[26]] |
J. Yao, B.B. Qiu, Z.G. Zhang, et al., Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells, Nat. Commun., 11(2020), No. 1, art. No. 2726.
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
L.L. Zhan, S.C. Yin, Y.K. Li, et al., Multiphase morphology with enhanced carrier lifetime via quaternary strategy enables high-efficiency thick-film, and large-area organic photovoltaics, Adv. Mater., 34(2022), No. 45, art. No. 2206269.
|
[[31]] |
|
[[32]] |
|
[[33]] |
|
[[34]] |
W. Gao, H.T. Fu, Y.X. Li, et al., Asymmetric acceptors enabling organic solar cells to achieve an over 17% efficiency: Conformation effects on regulating molecular properties and suppressing nonradiative energy loss, Adv. Energy Mater., 11(2021), No. 4, art. No. 2003177.
|
[[35]] |
Y.Z. Chen, F.J. Bai, Z.X. Peng, et al., Asymmetric alkoxy and alkyl substitution on nonfullerene acceptors enabling high-performance organic solar cells, Adv. Energy Mater., 11(2021), No. 3, art. No. 2003141.
|
[[36]] |
L.Y. Su, H.H. Huang, Y.C. Lin, et al., Enhancing long-term thermal stability of non-fullerene organic solar cells using self-assembly amphiphilic dendritic block copolymer interlayers, Adv. Funct. Mater., 31(2021), No. 4, art. No. 2005753.
|
[[37]] |
J.S. Song and Z.S. Bo, Asymmetric molecular engineering in recent nonfullerene acceptors for efficient organic solar cells, Chin. Chem. Lett., 34(2023), No. 10, art. No. 108163.
|
[[38]] |
|
[[39]] |
|
[[40]] |
Y.L. Yin, L.L. Zhan, M. Liu, et al., Boosting photovoltaic performance of ternary organic solar cells by integrating a multifunctional guest acceptor, Nano Energy, 90(2021), art. No. 106538.
|
[[41]] |
|
[[42]] |
|
[[43]] |
J. Lee, S.M. Lee, S. Chen, et al., Organic photovoltaics with multiple donor–acceptor pairs, Adv. Mater., 31(2019), No. 20, art. No. 1804762.
|
[[44]] |
|
[[45]] |
|
[[46]] |
N.Y. Doumon, L.L. Yang, and F. Rosei, Ternary organic solar cells: A review of the role of the third element, Nano Energy, 94(2022), art. No. 106915.
|
[[47]] |
L.C. Chang, M. Sheng, L.P. Duan, and A. Uddin, Ternary organic solar cells based on non-fullerene acceptors: A review, Org. Electron., 90(2021), art. No. 106063.
|
[[48]] |
Y.J. Cheng, B. Huang, X.X. Huang, et al., Oligomer-assisted photoactive layers enable >18% efficiency of organic solar cells, Angew. Chem. Int. Ed., 61(2022), No. 21, art. No. e202200329.
|
[[49]] |
Z.P. Yu, Z.X. Liu, F.X. Chen, et al., Simple non-fused electron acceptors for efficient and stable organic solar cells, Nat. Commun., 10(2019), art. No. 2152.
|
[[50]] |
|
[[51]] |
B. Qiu, Z. Chen, S. Qin, et al., Highly efficient all-small-molecule organic solar cells with appropriate active layer morphology by side chain engineering of donor molecules and thermal annealing, Adv. Mater., 32(2020), No. 21, art. No. 1908373.
|
[[52]] |
|
[[53]] |
J.N. Song, M. Zhang, M. Yuan, Y.H. Qian, Y.M. Sun, and F. Liu, Morphology characterization of bulk heterojunction solar cells, Small Methods, 2(2018), No. 3, art. No. 1700229.
|
/
〈 | 〉 |