Review on the design of high-strength and hydrogen-embrittlement-resistant steels

Zhiyu Du, Rongjian Shi, Xingyu Peng, Kewei Gao, Xiaolu Pang

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (7) : 1572-1589.

International Journal of Minerals, Metallurgy, and Materials All Journals
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (7) : 1572-1589. DOI: 10.1007/s12613-024-2900-1
Invited Review

Review on the design of high-strength and hydrogen-embrittlement-resistant steels

Author information +
History +

Abstract

Given the carbon peak and carbon neutrality era, there is an urgent need to develop high-strength steel with remarkable hydrogen embrittlement resistance. This is crucial in enhancing toughness and ensuring the utilization of hydrogen in emerging iron and steel materials. Simultaneously, the pursuit of enhanced metallic materials presents a cross-disciplinary scientific and engineering challenge. Developing high-strength, toughened steel with both enhanced strength and hydrogen embrittlement (HE) resistance holds significant theoretical and practical implications. This ensures secure hydrogen utilization and further carbon neutrality objectives within the iron and steel sector. Based on the design principles of high-strength steel HE resistance, this review provides a comprehensive overview of research on designing surface HE resistance and employing nanosized precipitates as intragranular hydrogen traps. It also proposes feasible recommendations and prospects for designing high-strength steel with enhanced HE resistance.

Cite this article

Download citation ▾
Zhiyu Du, Rongjian Shi, Xingyu Peng, Kewei Gao, Xiaolu Pang. Review on the design of high-strength and hydrogen-embrittlement-resistant steels. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(7): 1572‒1589 https://doi.org/10.1007/s12613-024-2900-1
This is a preview of subscription content, contact us for subscripton.

References

[1]
LiXF, ZhangJ, AkiyamaE, WangYF, LiQZ. Microstructural and crystallographic study of hydrogen-assisted cracking in high strength PSB1080 steel. Int. J. Hydrogen Energy, 2018, 43(37): 17898
CrossRef Google scholar
[2]
OkadaK, ShibataA, TakedaY, TsujiN. Crystallographic feature of hydrogen-related fracture in 2Mn-0.1C ferritic steel. Int. J. Hydrogen Energy, 2018, 43(24): 11298
CrossRef Google scholar
[3]
TianHY, WangX, CuiZY, et al. . Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater. Corros. Sci., 2018, 144: 145
CrossRef Google scholar
[4]
LiuX, LiuGY, XueJL, WangXD, LiQF. Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues. Int. J. Miner. Metall. Mater., 2022, 29(5): 1073
CrossRef Google scholar
[5]
VenezuelaJ, BlanchJ, ZulkiplyA, et al. . Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions. Corros. Sci., 2018, 135: 120
CrossRef Google scholar
[6]
ZhangTM, ZhaoWM, LiTT, et al. . Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation. Corros. Sci., 2018, 131: 104
CrossRef Google scholar
[7]
ZhangTM, ZhaoWM, ZhaoYJ, et al. . Effects of surface oxide films on hydrogen permeation and susceptibility to embrittlement of X80 steel under hydrogen atmosphere. Int. J. Hydrogen Energy, 2018, 43(6): 3353
CrossRef Google scholar
[8]
ÁlvarezG, PeralLB, RodríguezC, GarcíaTE, BelzunceFJ. Hydrogen embrittlement of structural steels: Effect of the displacement rate on the fracture toughness of high-pressure hydrogen pre-charged samples. Int. J. Hydrogen Energy, 2019, 44(29): 15634
CrossRef Google scholar
[9]
EgelsG, FussikR, WeberS, TheisenW. On the role of nitrogen on hydrogen environment embrittlement of high-interstitial austenitic CrMnC(N) steels. Int. J. Hydrogen Energy, 2019, 44(60): 32323
CrossRef Google scholar
[10]
ChenXY, MaLL, ZhouCS, et al. . Improved resistance to hydrogen environment embrittlement of warm-deformed 304 austenitic stainless steel in high-pressure hydrogen atmosphere. Corros. Sci., 2019, 148: 159
CrossRef Google scholar
[11]
NohHS, KangJH, KimKM, KimSJ. The effects of replacing Ni with Mn on hydrogen embrittlement in Cr–Ni–Mn–N austenitic steels. Corros. Sci., 2019, 152: 93
CrossRef Google scholar
[12]
QueirogaLR, MarcolinoGF, SantosM, RodriguesG, Eduardo dos SantosC, BritoP. Influence of machining parameters on surface roughness and susceptibility to hydrogen embrittlement of austenitic stainless steels. Int. J. Hydrogen Energy, 2019, 44(54): 29027
CrossRef Google scholar
[13]
WangYF, WuXP, LiXF, WuWJ, GongJM. Combined effects of prior plastic deformation and sensitization on hydrogen embrittlement of 304 austenitic stainless steel. Int. J. Hydrogen Energy, 2019, 44(13): 7014
CrossRef Google scholar
[14]
ZhangYJ, HuiWJ, WangJJ, LeiM, ZhaoXL. Enhancing the resistance to hydrogen embrittlement of Al-containing medium-Mn steel through heavy warm rolling. Scripta Mater., 2019, 165: 15
CrossRef Google scholar
[15]
X.K. Jin, L. Xu, W.C. Yu, K.F. Yao, J. Shi, and M.Q. Wang, The effect of undissolved and temper-induced (Ti, Mo)C precipitates on hydrogen embrittlement of quenched and tempered Cr–Mo steel, Corros. Sci., 166(2020), art. No. 108421.
[16]
KimKS, KangJH, KimSJ. Nitrogen effect on hydrogen diffusivity and hydrogen embrittlement behavior in austenitic stainless steels. Scripta Mater., 2020, 184: 70
CrossRef Google scholar
[17]
NajamH, KoyamaM, BalB, AkiyamaE, TsuzakiK. Strain rate and hydrogen effects on crack growth from a Notch in a Fe-high-Mn steel containing 1.1 wt% solute carbon. Int. J. Hydrogen Energy, 2020, 45(1): 1125
CrossRef Google scholar
[18]
YuSH, LeeSM, LeeS, et al. . Effects of lamellar structure on tensile properties and resistance to hydrogen embrittlement of pearlitic steel. Acta Mater., 2019, 172: 92
CrossRef Google scholar
[19]
E. Ohaeri, J. Omale, K.M.M. Rahman, and J. Szpunar, Effect of post-processing annealing treatments on microstructure development and hydrogen embrittlement in API 5L X70 pipeline steel, Mater. Charact., 161(2020), art. No. 110124.
[20]
B.L. Zhang, Q.S. Zhu, C. Xu, et al., Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels, Nat. Commun., 13(2022), No. 1, art. No. 3858.
[21]
FanED, ZhangSQ, XieDH, ZhaoQY, LiXG, HuangYH. Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel. Int. J. Miner. Metall. Mater., 2021, 28(2): 249
CrossRef Google scholar
[22]
LiXF, ZhangJ, MaMM, SongXL. Effect of shot peening on hydrogen embrittlement of high strength steel. Int. J. Miner. Metall. Mater., 2016, 23(6): 667
CrossRef Google scholar
[23]
GuoXF, ZaeffererS, ArchieF, BleckW. Hydrogen effect on the mechanical behaviour and microstructural features of a Fe-Mn-C twinning induced plasticity steel. Int. J. Miner. Metall. Mater., 2021, 28(5): 835
CrossRef Google scholar
[24]
ShiRJ, WangZD, QiaoLJ, PangXL. Effect of in situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel. Int. J. Miner. Metall. Mater., 2021, 28(4): 644
CrossRef Google scholar
[25]
LiuMH, LiuZY, DuCW, ZhanXQ, DaiCD, PanY, LiXG. Effect of cathodic potential on stress corrosion cracking behavior of 21Cr2NiMo steel in simulated seawater. Int. J. Miner. Metall. Mater., 2022, 29(2): 263
CrossRef Google scholar
[26]
YangHC, ZhangHM, LiuCW, et al. . Effects of defect on the hydrogen embrittlement behavior of X80 pipeline steel in hydrogen-blended natural gas environments. Int. J. Hydrogen Energy, 2024, 58: 158
CrossRef Google scholar
[27]
ZhouCS, SongYY, ShiQY, et al. . Effect of pre-strain on hydrogen embrittlement of metastable austenitic stainless steel under different hydrogen conditions. Int. J. Hydrogen Energy, 2019, 44(47): 26036
CrossRef Google scholar
[28]
GuedesD, Cupertino MalheirosL, OudrissA, et al. . The role of plasticity and hydrogen flux in the fracture of a tempered martensitic steel: A new design of mechanical test until fracture to separate the influence of mobile from deeply trapped hydrogen. Acta Mater., 2020, 186: 133
CrossRef Google scholar
[29]
Y.F. Wang, B. Sharma, Y.T. Xu, et al., Switching nanoprecipitates to resist hydrogen embrittlement in high-strength aluminum alloys, Nat. Commun., 13(2022), No. 1, art. No. 6860.
[30]
M. Safyari, N. Khossossi, T. Meisel, P. Dey, T. Prohaska, and M. Moshtaghi, New insights into hydrogen trapping and embrittlement in high strength aluminum alloys, Corros. Sci., 223(2023), art. No. 111453.
[31]
Q. Yan, L.C. Yan, X.L. Pang, and K.W. Gao, Hydrogen trapping and hydrogen embrittlement in 15–5PH stainless steel, Corros. Sci., 205(2022), art. No. 110416.
[32]
HuangLC, ChenDK, XieDG, et al. . Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron. Nat. Mater., 2023, 22(6): 710
CrossRef Google scholar
[33]
ZhouCS, YeBG, SongYY, CuiTC, XuP, ZhangL. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel. Int. J. Hydrogen Energy, 2019, 44(40): 22547
CrossRef Google scholar
[34]
RobertsonIM, SofronisP, NagaoA, et al. . Hydrogen embrittlement understood. Metall. Mater. Trans. B, 2015, 46(3): 1085
CrossRef Google scholar
[35]
PandaA, DavisL, RamkumarP, AmirthalingamM. The role of retained austenite against hydrogen embrittlement and white etching area formation in bearing steel under dynamic loading. Int. J. Hydrogen Energy, 2024, 58: 1359
CrossRef Google scholar
[36]
MartinML, DadfarniaM, NagaoA, WangS, SofronisP. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Mater., 2019, 165: 734
CrossRef Google scholar
[37]
NovakP, YuanR, SomerdayBP, SofronisP, RitchieRO. A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel. J. Mech. Phys. Solids, 2010, 58(2): 206
CrossRef Google scholar
[38]
Z. Wang, Z.L. Li, X. Zhu, et al., Correlational research of microstructure characteristics and hydrogen induced cracking in hot-rolled Fe–6Mn–0.2C–3Al steels, Corros. Sci., 228(2024), art. No. 111811.
[39]
KirchheimR. On the solute-defect interaction in the framework of a defactant concept. Int. J. Mater. Res., 2009, 100: 483
CrossRef Google scholar
[40]
M. Wasim, M.B. Djukic, and T.D. Ngo, Influence of hydrogen-enhanced plasticity and decohesion mechanisms of hydrogen embrittlement on the fracture resistance of steel, Eng. Fail. Anal., 123(2021), art. No. 105312.
[41]
DwivediSK, VishwakarmaM. Effect of hydrogen in advanced high strength steel materials. Int. J. Hydrogen Energy, 2019, 44(51): 28007
CrossRef Google scholar
[42]
DwivediSK, VishwakarmaM. Hydrogen embrittlement in different materials: A review. Int. J. Hydrogen Energy, 2018, 43(46): 21603
CrossRef Google scholar
[43]
BrownBF, BeachemCD. A study of the stress factor in corrosion cracking by use of the pre-cracked cantilever beam specimen. Corros. Sci., 1965, 5(11): 745
CrossRef Google scholar
[44]
NagumoM. Function of hydrogen in embrittlement of high-strength steels. ISIJ Int., 2001, 41(6): 590
CrossRef Google scholar
[45]
NagumoM. Hydrogen related failure of steels–A new aspect. Mater. Sci. Technol., 2004, 20(8): 940
CrossRef Google scholar
[46]
MatsumotoR, SekiS, TaketomiS, MiyazakiN. Hydrogen-related phenomena due to decreases in lattice defect energies—Molecular dynamics simulations using the embedded atom method potential with pseudo-hydrogen effects. Comput. Mater. Sci., 2014, 92: 362
CrossRef Google scholar
[47]
SolankiKN, WardDK, BammannDJ. A nanoscale study of dislocation nucleation at the crack tip in the nickel-hydrogen system. Metall. Mater. Trans. A, 2011, 42(2): 340
CrossRef Google scholar
[48]
M.B. Djukic, G.M. Bakic, V. Sijacki Zeravcic, A. Sedmak, and B. Rajicic, The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion, Eng. Fract. Mech., 216(2019), art. No. 106528.
[49]
LeeHW, DjukicMB, BasaranC. Modeling fatigue life and hydrogen embrittlement of bcc steel with unified mechanics theory. Int. J. Hydrogen Energy, 2023, 48(54): 20773
CrossRef Google scholar
[50]
NagaoA, DadfarniaM, SomerdayBP, SofronisP, RitchieRO. Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels. J. Mech. Phys. Solids, 2018, 112: 403
CrossRef Google scholar
[51]
WangS, MartinML, SofronisP, OhnukiS, HashimotoN, RobertsonIM. Hydrogen-induced intergranular failure of iron. Acta Mater., 2014, 69: 275
CrossRef Google scholar
[52]
ZhongZQ, TianZL, YangC. Application of EBSD technique in research of hydrogen embrittlement mechanism for high strength martensite stainless steel. Trans. Mater. Heat Treat., 2015, 36(2): 77
[53]
ParkIJ, JeongKH, JungJG, LeeCS, LeeYK. The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe–18Mn–0.6C twinning-induced plasticity steels. Int. J. Hydrogen Energy, 2012, 37(12): 9925
CrossRef Google scholar
[54]
HanDK, LeeSK, NohSJ, KimSK, SuhDW. Effect of aluminium on hydrogen permeation of high-manganese twinning-induced plasticity steel. Scripta Mater., 2015, 99: 45
CrossRef Google scholar
[55]
JinJE, LeeYK. Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel. Acta Mater., 2012, 60(4): 1680
CrossRef Google scholar
[56]
J.H. Ryu, S.K. Kim, C.S. Lee, D.W. Suh, and H.K.D.H. Bhadeshia, Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe–Mn–C steel, Proc. R. Soc. A., 469(2013), No. 2149, art. No. 20120458.
[57]
LeeSM, ParkIJ, JungJG, LeeYK. The effect of Si on hydrogen embrittlement of Fe–18Mn–0.6C–xSi twinning-induced plasticity steels. Acta Mater., 2016, 103: 264
CrossRef Google scholar
[58]
BaiPP, LiSW, ChengJ, et al. . Improvement of hydrogen permeation barrier performance by iron sulphide surface films. Int. J. Miner. Metall. Mater., 2023, 30(9): 1792
CrossRef Google scholar
[59]
J.S. Park, H.R. Bang, S.P. Jung, and S.J. Kim, Effect of plastic strain on corrosion-induced hydrogen infusion and embrittlement behaviors of Zn-coated ultra-high strength steel sheet, Surf. Coat. Technol., 477(2024), art. No. 130335.
[60]
F. Käufer, A. Quade, A. Kruth, and H. Kahlert, Magnetron sputtering as a versatile tool for precise synthesis of hybrid iron oxide–graphite nanomaterial for electrochemical applications, Nanomaterials, 14(2024), No. 3, art. No. 252.
[61]
D. Iadicicco, S. Bassini, M. Vanazzi, et al., Efficient hydrogen and deuterium permeation reduction in Al2O3 coatings with enhanced radiation tolerance and corrosion resistance, Nucl. Fusion, 58(2018), No. 12, art. No. 126007.
[62]
García FerréF, BertarelliE, ChiodoniA, et al. . The mechanical properties of a nanocrystalline Al2O3/a-Al2O3 composite coating measured by nanoindentation and Brillouin spectroscopy. Acta Mater., 2013, 61(7): 2662
CrossRef Google scholar
[63]
Y. Hatano, K. Zhang, and K. Hashizume, Fabrication of ZrO2 coatings on ferritic steel by wet-chemical methods as a tritium permeation barrier, Phys. Scr., 2011(2011), No. T145, art. No. 014044.
[64]
LuZX, ZhouQY, LingYH, HouBR, WangJP, ZhangZJ. Preparation and hydrogen penetration performance of TiO2/TiCx composite coatings. Int. J. Hydrogen Energy, 2020, 45(27): 14048
CrossRef Google scholar
[65]
M. Tamura and T. Eguchi, Nanostructured thin films for hydrogen-permeation barrier, J. Vac. Sci. Technol. A, 33(2015), No. 4, art. No. 041503.
[66]
NemaničV, McGuinessPJ, DaneuN, ZajecB, SiketićZ, WaldhauserW. Hydrogen permeation through silicon nitride films. J. Alloys Compd., 2012, 539: 184
CrossRef Google scholar
[67]
K.J. Shi, X.Y. Meng, S. Xiao, et al., MXene coatings: Novel hydrogen permeation barriers for pipe steels, Nanomaterials, 11(2021), No. 10, art. No. 2737.
[68]
K.J. Shi, S. Xiao, Q.D. Ruan, et al., Hydrogen permeation behavior and mechanism of multi-layered graphene coatings and mitigation of hydrogen embrittlement of pipe steel, Appl. Surf. Sci., 573(2022), art. No. 151529.
[69]
H. Yang, Z.M. Shao, W. Wang, X. Ji, and C.J. Li, A composite coating of GO-Al2O3 for tritium permeation barrier, Fusion Eng. Des., 156(2020), art. No. 111689.
[70]
JeonHH, LeeSM, HanJ, ParkIJ, LeeYK. The effect of Zn coating layers on the hydrogen embrittlement of hotdip galvanized twinning-induced plasticity steel. Corros. Sci., 2016, 111: 267
CrossRef Google scholar
[71]
J. Yoo, S. Kim, M.C. Jo, et al., Effects of Al–Si coating structures on bendability and resistance to hydrogen embrittlement in 1.5-GPa-grade hot-press-forming steel, Acta Mater., 225(2022), art. No. 117561.
[72]
BhadeshiaHKDH. Prevention of hydrogen embrittlement in steels. ISIJ Int., 2016, 56(1): 24
CrossRef Google scholar
[73]
S.C. Marques, A.V. Castilho, and D.S. dos Santos, Effect of alloying elements on the hydrogen diffusion and trapping in high entropy alloys, Scripta Mater., 201(2021), art. No. 113957.
[74]
Z.C. Xie, Y.J. Wang, C.S. Lu, and L.H. Dai, Sluggish hydrogen diffusion and hydrogen decreasing stacking fault energy in a high-entropy alloy, Mater. Today Commun., 26(2021), art. No. 101902.
[75]
SidelevDV, KashkarovEB, SyrtanovMS, KrivobokovVP. Nickel-chromium (Ni–Cr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings. Surf. Coat. Technol., 2019, 369: 69
CrossRef Google scholar
[76]
YamabeJ, MatsuokaS, MurakamiY. Surface coating with a high resistance to hydrogen entry under high-pressure hydrogen-gas environment. Int. J. Hydrogen Energy, 2013, 38(24): 10141
CrossRef Google scholar
[77]
ZhengLY, LiHP, ZhouJ, et al. . Layer-structured Cr/CrxN coating via electroplating-based nitridation achieving high deuterium resistance as the hydrogen permeation barrier. J. Adv. Ceram., 2022, 11(12): 1944
CrossRef Google scholar
[78]
M.C. Jo, M.C. Jo, J. Yoo, et al., Strong resistance to hydrogen embrittlement via surface shielding in multi-layered austenite/martensite steel sheets, Mater. Sci. Eng. A, 800(2021), art. No. 140319.
[79]
P.Y. Liu, B.N. Zhang, R.M. Niu, et al., Engineering metal–carbide hydrogen traps in steels, Nat. Commun., 15(2024), No. 1, art. No. 724.
[80]
Echeverri RestrepoS, Di StefanoD, MrovecM, PaxtonAT. Density functional theory calculations of iron - vanadium carbide interfaces and the effect of hydrogen. Int. J. Hydrogen Energy, 2020, 45(3): 2382
CrossRef Google scholar
[81]
WeiFG, TsuzakiK. Quantitative analysis on hydrogen trapping of TiC particles in steel. Metall. Mater. Trans. A, 2006, 37(2): 331
CrossRef Google scholar
[82]
PengZX, LiuJ, HuangF, HuQ, CaoCS, HouSP. Comparative study of non-metallic inclusions on the critical size for HIC initiation and its influence on hydrogen trapping. Int. J. Hydrogen Energy, 2020, 45(22): 12616
CrossRef Google scholar
[83]
K. Ohsawa, K. Eguchi, H. Watanabe, M. Yamaguchi, and M. Yagi, Configuration and binding energy of multiple hydrogen atoms trapped in monovacancy in bcc transition metals, Phys. Rev. B, 85(2012), No. 9, art. No. 094102.
[84]
KumnickAJ, JohnsonHH. Deep trapping states for hydrogen in deformed iron. Acta Metall., 1980, 28(1): 33
CrossRef Google scholar
[85]
PicrauxST. Defect trapping of gas atoms in metals. Nucl. Instrum. Meth., 1981, 182–183: 413
CrossRef Google scholar
[86]
DepoverT, VerbekenK. The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe–C–X alloys: An experimental proof of the HELP mechanism. Int. J. Hydrogen Energy, 2018, 43(5): 3050
CrossRef Google scholar
[87]
D.E. Jiang and E.A. Carter, Diffusion of interstitial hydrogen into and through bcc Fe from first principles, Phys. Rev. B, 70(2004), No. 6, art. No. 064102.
[88]
SilversteinR, GlamB, EliezerD, MorenoD, EliezerS. Dynamic deformation of hydrogen charged austenitic-ferritic steels: Hydrogen trapping mechanisms, and simulations. J. Alloys Compd., 2018, 731: 1238
CrossRef Google scholar
[89]
RamasubramaniamA, ItakuraM, OrtizM, CarterEA. Effect of atomic scale plasticity on hydrogen diffusion in iron: Quantum mechanically informed and on-the-fly kinetic Monte Carlo simulations. J. Mater. Res., 2008, 23(10): 2757
CrossRef Google scholar
[90]
WangMQ, AkiyamaE, TsuzakiK. Effect of hydrogen and stress concentration on the Notch tensile strength of AISI 4135 steel. Mater. Sci. Eng. A, 2005, 398(1–2): 37
CrossRef Google scholar
[91]
ItakuraM, KaburakiH, YamaguchiM, OkitaT. The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study. Acta Mater., 2013, 61(18): 6857
CrossRef Google scholar
[92]
BernsteinIM. The effect of hydrogen on the deformation of iron. Scr. Metall., 1974, 8(4): 343
CrossRef Google scholar
[93]
WangMQ, AkiyamaE, TsuzakiK. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corros. Sci., 2007, 49(11): 4081
CrossRef Google scholar
[94]
SongEJ, BhadeshiaHKDH, SuhDW. Effect of hydrogen on the surface energy of ferrite and austenite. Corros. Sci., 2013, 77: 379
CrossRef Google scholar
[95]
YamasakiS, TakahashiT. Evaluation method of delayed fracture property of high strength steels. Tetsu-to-Hagane, 1997, 83(7): 454
CrossRef Google scholar
[96]
DepoverT, VerbekenK. Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation in Fe–C–V alloys. Mater. Sci. Eng. A, 2016, 675: 299
CrossRef Google scholar
[97]
CountsWA, WolvertonC, GibalaR. First-principles energetics of hydrogen traps in α-Fe: Point defects. Acta Mater., 2010, 58(14): 4730
CrossRef Google scholar
[98]
DepoverT, VerbekenK. The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe–C–Ti alloys. Corros. Sci., 2016, 112: 308
CrossRef Google scholar
[99]
LeeJM, LeeT, KwonYJ, MunDJ, YooJY, LeeCS. Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel. Met. Mater. Int., 2016, 22(3): 364
CrossRef Google scholar
[100]
TurkA, San MartinD, Rivera-Díaz-del-CastilloPEJ, Galindo-NavaEI. Correlation between vanadium carbide size and hydrogen trapping in ferritic steel. Scripta Mater., 2018, 152: 112
CrossRef Google scholar
[101]
D. Di Stefano, R. Nazarov, T. Hickel, J. Neugebauer, M. Mrovec, and C. Elsässer, First-principles investigation of hydrogen interaction with TiC precipitates in α-Fe, Phys. Rev. B, 93(2016), No. 18, art. No. 184108.
[102]
Y.A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, and R. Drautz, First-principles study on the interaction of H interstitials with grain boundaries in α- and γ-Fe, Phys. Rev. B, 84(2011), No. 14, art. No. 144121.
[103]
PaxtonAT. From quantum mechanics to physical metallurgy of steels. Mater. Sci. Technol., 2014, 30(9): 1063
CrossRef Google scholar
[104]
WeiFG, TsuzakiK. Hydrogen absorption of incoherent TiC particles in iron from environment at high temperatures. Metall. Mater. Trans. A, 2004, 35(10): 3155
CrossRef Google scholar
[105]
E.J. McEniry, T. Hickel, and J. Neugebauer, Hydrogen behaviour at twist{110}grain boundaries in a-Fe, Phil. Trans. R. Soc. A., 375(2017), No. 2098, art. No. 20160402.
[106]
B.Q. Cheng, A.T. Paxton, and M. Ceriotti, Hydrogen diffusion and trapping in α-iron: The role of quantum and anharmonic fluctuations, Phys. Rev. Lett., 120(2018), No. 22, art. No. 225901.
[107]
RonevichJA, De CoomanBC, SpeerJG, De MoorE, MatlockDK. Hydrogen effects in prestrained transformation induced plasticity steel. Metall. Mater. Trans. A, 2012, 43(7): 2293
CrossRef Google scholar
[108]
KoyamaM, SpringerH, MerzlikinSV, TsuzakiK, AkiyamaE, RaabeD. Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al-C light weight austenitic steel. Int. J. Hydrogen Energy, 2014, 39(9): 4634
CrossRef Google scholar
[109]
KriegerW, MerzlikinSV, BashirA, SzczepaniakA, SpringerH, RohwerderM. Spatially resolved localization and characterization of trapped hydrogen in zero to three dimensional defects inside ferritic steel. Acta Mater., 2018, 144: 235
CrossRef Google scholar
[110]
WallaertE, DepoverT, ArafinM, VerbekenK. Thermal desorption spectroscopy evaluation of the hydrogen-trapping capacity of NbC and NbN precipitates. Metall. Mater. Trans. A, 2014, 45(5): 2412
CrossRef Google scholar
[111]
R.J. Shi, Y.L. Wang, S.P. Lu, et al., Enhancing the hydrogen embrittlement resistance with cementite/VC multiple precipitates in high-strength steel, Mater. Sci. Eng. A, 874(2023), art. No. 145084.
[112]
F.T. Dong, J. Venezuela, H.X. Li, et al., Effect of vanadium and rare earth microalloying on the hydrogen embrittlement susceptibility of a Fe–18Mn–0.6C TWIP steel studied using the linearly increasing stress test, Corros. Sci., 185(2021), art. No. 109440.
[113]
TakahashiJ, KawakamiK, TaruiT. Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography. Scripta Mater., 2012, 67(2): 213
CrossRef Google scholar
[114]
ChenYS, HaleyD, GerstlSSA, et al. . Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel. Science, 2017, 355(6330): 1196
CrossRef Google scholar
[115]
TakahashiJ, KawakamiK, KobayashiY. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel. Acta Mater., 2018, 153: 193
CrossRef Google scholar
[116]
MalardB, RemyB, ScottC, et al. . Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering. Mater. Sci. Eng. A, 2012, 536: 110
CrossRef Google scholar
[117]
J.Y. Fang, C. Xu, Y. Li, R.Z. Peng, and X.J. Fu, Effect of grain orientation and interface coherency on the hydrogen trapping ability of TiC precipitates in a ferritic steel, Mater. Lett., 308(2022), art. No. 131281.
[118]
JunT, KazutoK, YukikoK, ToshimiT. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scripta Mater., 2010, 63(3): 261
CrossRef Google scholar
[119]
S.Q. Zhang, J.F. Wan, Q.Y. Zhao, et al., Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel, Corros. Sci., 164(2020), art. No. 108345.
[120]
OhnumaM, SuzukiJI, WeiFG, TsuzakiK. Direct observation of hydrogen trapped by NbC in steel using small-angle neutron scattering. Scripta Mater., 2008, 58(2): 142
CrossRef Google scholar
[121]
ChenYS, LuHZ, LiangJT, et al. . Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science, 2020, 367(6474): 171
CrossRef Google scholar
[122]
ShiRJ, MaY, WangZD, et al. . Atomic-scale investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces. Acta Mater., 2020, 200: 686
CrossRef Google scholar
[123]
WeiFG, HaraT, TsuzakiK. Nano-preciptates design with hydrogen trapping character in high strength steel. Advanced Steels: The Recent Scenario in Steel Science and Technology, 2011Berlin, HeidelbergSpringer87
CrossRef Google scholar
[124]
NagaoA, HayashiK, OiK, MitaoS. Effect of uniform distribution of fine cementite on hydrogen embrittlement of low carbon martensitic steel plates. ISIJ Int., 2012, 52(2): 213
CrossRef Google scholar
[125]
ChengXY, ZhangZJ, LiuWQ, WangXJ. Direct observation of hydrogen-trapping sites in newly developed high-strength mooring chain steel by atom probe tomography. Prog. Nat. Sci. Mater. Int., 2013, 23(4): 446
CrossRef Google scholar
[126]
ZhuX, LiW, HsuTY, ZhouS, WangL, JinXJ. Improved resistance to hydrogen embrittlement in a high-strength steel by quenching–partitioning–tempering treatment. Scripta Mater., 2015, 97: 21
CrossRef Google scholar
[127]
FanYH, ZhangB, YiHL, et al. . The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel. Acta Mater., 2017, 139: 188
CrossRef Google scholar
[128]
LeeJL, LeeJY. Hydrogen trapping in AISI 4340 steel. Met. Sci., 1983, 17(9): 426
CrossRef Google scholar
[129]
FrappartS, OudrissA, FeaugasX, et al. . Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy. Scripta Mater., 2011, 65(10): 859
CrossRef Google scholar
[130]
VerkhovykhAV, MirzoevAA, RuzanovaGE, MirzaevDA, OkishevKY. Interaction of hydrogen atoms with vacancies and divacancies in bcc iron. Mater. Sci. Forum, 2016, 870: 550
CrossRef Google scholar
[131]
A. Drexler, T. Depover, S. Leitner, K. Verbeken, and W. Ecker, Microstructural based hydrogen diffusion and trapping models applied to Fe–C–X alloys, J. Alloys Compd., 826(2020), art. No. 154057.
[132]
NagumoM, TakaiK. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview. Acta Mater., 2019, 165: 722
CrossRef Google scholar
[133]
LinYC, ChenD, ChiangMH, ChengGJ, LinHC, YenHW. Response of hydrogen desorption and hydrogen embrittlement to precipitation of nanometer-sized copper in tempered martensitic low-carbon steel. JOM, 2019, 71(4): 1349
CrossRef Google scholar
[134]
MaY, ShiYF, WangHY, et al. . A first-principles study on the hydrogen trap characteristics of coherent nano-precipitates in α-Fe. Int. J. Hydrogen Energy, 2020, 45(51): 27941
CrossRef Google scholar
[135]
DrexlerA, DepoverT, VerbekenK, EckerW. Model-based interpretation of thermal desorption spectra of Fe–C–Ti alloys. J. Alloys Compd., 2019, 789: 647
CrossRef Google scholar
[136]
WeiFG, HaraT, TsuzakiK. High-resolution transmission electron microscopy study of crystallography and morphology of TiC precipitates in tempered steel. Philos. Mag., 2004, 84(17): 1735
CrossRef Google scholar
[137]
LinYC, McCarrollIE, LinYT, ChungWC, CairneyJM, YenHW. Hydrogen trapping and desorption of dual precipitates in tempered low-carbon martensitic steel. Acta Mater., 2020, 196: 516
CrossRef Google scholar
[138]
ZhaoH, ChakrabortyP, PongeD, et al. . Hydrogen trapping and embrittlement in high-strength Al alloys. Nature, 2022, 602(7897): 437
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/