Review on the design of high-strength and hydrogen-embrittlement-resistant steels

Zhiyu Du, Rongjian Shi, Xingyu Peng, Kewei Gao, Xiaolu Pang

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (7) : 1572-1589. DOI: 10.1007/s12613-024-2900-1
Invited Review

Review on the design of high-strength and hydrogen-embrittlement-resistant steels

Author information +
History +

Abstract

Given the carbon peak and carbon neutrality era, there is an urgent need to develop high-strength steel with remarkable hydrogen embrittlement resistance. This is crucial in enhancing toughness and ensuring the utilization of hydrogen in emerging iron and steel materials. Simultaneously, the pursuit of enhanced metallic materials presents a cross-disciplinary scientific and engineering challenge. Developing high-strength, toughened steel with both enhanced strength and hydrogen embrittlement (HE) resistance holds significant theoretical and practical implications. This ensures secure hydrogen utilization and further carbon neutrality objectives within the iron and steel sector. Based on the design principles of high-strength steel HE resistance, this review provides a comprehensive overview of research on designing surface HE resistance and employing nanosized precipitates as intragranular hydrogen traps. It also proposes feasible recommendations and prospects for designing high-strength steel with enhanced HE resistance.

Keywords

hydrogen embrittlement / surface design / hydrogen traps / nanosized precipitates

Cite this article

Download citation ▾
Zhiyu Du, Rongjian Shi, Xingyu Peng, Kewei Gao, Xiaolu Pang. Review on the design of high-strength and hydrogen-embrittlement-resistant steels. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(7): 1572‒1589 https://doi.org/10.1007/s12613-024-2900-1

References

[1]
Li XF, Zhang J, Akiyama E, Wang YF, Li QZ. Microstructural and crystallographic study of hydrogen-assisted cracking in high strength PSB1080 steel. Int. J. Hydrogen Energy, 2018, 43(37): 17898,
CrossRef Google scholar
[2]
Okada K, Shibata A, Takeda Y, Tsuji N. Crystallographic feature of hydrogen-related fracture in 2Mn-0.1C ferritic steel. Int. J. Hydrogen Energy, 2018, 43(24): 11298,
CrossRef Google scholar
[3]
Tian HY, Wang X, Cui ZY, et al.. Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater. Corros. Sci., 2018, 144: 145,
CrossRef Google scholar
[4]
Liu X, Liu GY, Xue JL, Wang XD, Li QF. Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues. Int. J. Miner. Metall. Mater., 2022, 29(5): 1073,
CrossRef Google scholar
[5]
Venezuela J, Blanch J, Zulkiply A, et al.. Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions. Corros. Sci., 2018, 135: 120,
CrossRef Google scholar
[6]
Zhang TM, Zhao WM, Li TT, et al.. Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation. Corros. Sci., 2018, 131: 104,
CrossRef Google scholar
[7]
Zhang TM, Zhao WM, Zhao YJ, et al.. Effects of surface oxide films on hydrogen permeation and susceptibility to embrittlement of X80 steel under hydrogen atmosphere. Int. J. Hydrogen Energy, 2018, 43(6): 3353,
CrossRef Google scholar
[8]
Álvarez G, Peral LB, Rodríguez C, García TE, Belzunce FJ. Hydrogen embrittlement of structural steels: Effect of the displacement rate on the fracture toughness of high-pressure hydrogen pre-charged samples. Int. J. Hydrogen Energy, 2019, 44(29): 15634,
CrossRef Google scholar
[9]
Egels G, Fussik R, Weber S, Theisen W. On the role of nitrogen on hydrogen environment embrittlement of high-interstitial austenitic CrMnC(N) steels. Int. J. Hydrogen Energy, 2019, 44(60): 32323,
CrossRef Google scholar
[10]
Chen XY, Ma LL, Zhou CS, et al.. Improved resistance to hydrogen environment embrittlement of warm-deformed 304 austenitic stainless steel in high-pressure hydrogen atmosphere. Corros. Sci., 2019, 148: 159,
CrossRef Google scholar
[11]
Noh HS, Kang JH, Kim KM, Kim SJ. The effects of replacing Ni with Mn on hydrogen embrittlement in Cr–Ni–Mn–N austenitic steels. Corros. Sci., 2019, 152: 93,
CrossRef Google scholar
[12]
Queiroga LR, Marcolino GF, Santos M, Rodrigues G, Eduardo dos Santos C, Brito P. Influence of machining parameters on surface roughness and susceptibility to hydrogen embrittlement of austenitic stainless steels. Int. J. Hydrogen Energy, 2019, 44(54): 29027,
CrossRef Google scholar
[13]
Wang YF, Wu XP, Li XF, Wu WJ, Gong JM. Combined effects of prior plastic deformation and sensitization on hydrogen embrittlement of 304 austenitic stainless steel. Int. J. Hydrogen Energy, 2019, 44(13): 7014,
CrossRef Google scholar
[14]
Zhang YJ, Hui WJ, Wang JJ, Lei M, Zhao XL. Enhancing the resistance to hydrogen embrittlement of Al-containing medium-Mn steel through heavy warm rolling. Scripta Mater., 2019, 165: 15,
CrossRef Google scholar
[15]
X.K. Jin, L. Xu, W.C. Yu, K.F. Yao, J. Shi, and M.Q. Wang, The effect of undissolved and temper-induced (Ti, Mo)C precipitates on hydrogen embrittlement of quenched and tempered Cr–Mo steel, Corros. Sci., 166(2020), art. No. 108421.
[16]
Kim KS, Kang JH, Kim SJ. Nitrogen effect on hydrogen diffusivity and hydrogen embrittlement behavior in austenitic stainless steels. Scripta Mater., 2020, 184: 70,
CrossRef Google scholar
[17]
Najam H, Koyama M, Bal B, Akiyama E, Tsuzaki K. Strain rate and hydrogen effects on crack growth from a Notch in a Fe-high-Mn steel containing 1.1 wt% solute carbon. Int. J. Hydrogen Energy, 2020, 45(1): 1125,
CrossRef Google scholar
[18]
Yu SH, Lee SM, Lee S, et al.. Effects of lamellar structure on tensile properties and resistance to hydrogen embrittlement of pearlitic steel. Acta Mater., 2019, 172: 92,
CrossRef Google scholar
[19]
E. Ohaeri, J. Omale, K.M.M. Rahman, and J. Szpunar, Effect of post-processing annealing treatments on microstructure development and hydrogen embrittlement in API 5L X70 pipeline steel, Mater. Charact., 161(2020), art. No. 110124.
[20]
B.L. Zhang, Q.S. Zhu, C. Xu, et al., Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels, Nat. Commun., 13(2022), No. 1, art. No. 3858.
[21]
Fan ED, Zhang SQ, Xie DH, Zhao QY, Li XG, Huang YH. Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel. Int. J. Miner. Metall. Mater., 2021, 28(2): 249,
CrossRef Google scholar
[22]
Li XF, Zhang J, Ma MM, Song XL. Effect of shot peening on hydrogen embrittlement of high strength steel. Int. J. Miner. Metall. Mater., 2016, 23(6): 667,
CrossRef Google scholar
[23]
Guo XF, Zaefferer S, Archie F, Bleck W. Hydrogen effect on the mechanical behaviour and microstructural features of a Fe-Mn-C twinning induced plasticity steel. Int. J. Miner. Metall. Mater., 2021, 28(5): 835,
CrossRef Google scholar
[24]
Shi RJ, Wang ZD, Qiao LJ, Pang XL. Effect of in situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel. Int. J. Miner. Metall. Mater., 2021, 28(4): 644,
CrossRef Google scholar
[25]
Liu MH, Liu ZY, Du CW, Zhan XQ, Dai CD, Pan Y, Li XG. Effect of cathodic potential on stress corrosion cracking behavior of 21Cr2NiMo steel in simulated seawater. Int. J. Miner. Metall. Mater., 2022, 29(2): 263,
CrossRef Google scholar
[26]
Yang HC, Zhang HM, Liu CW, et al.. Effects of defect on the hydrogen embrittlement behavior of X80 pipeline steel in hydrogen-blended natural gas environments. Int. J. Hydrogen Energy, 2024, 58: 158,
CrossRef Google scholar
[27]
Zhou CS, Song YY, Shi QY, et al.. Effect of pre-strain on hydrogen embrittlement of metastable austenitic stainless steel under different hydrogen conditions. Int. J. Hydrogen Energy, 2019, 44(47): 26036,
CrossRef Google scholar
[28]
Guedes D, Cupertino Malheiros L, Oudriss A, et al.. The role of plasticity and hydrogen flux in the fracture of a tempered martensitic steel: A new design of mechanical test until fracture to separate the influence of mobile from deeply trapped hydrogen. Acta Mater., 2020, 186: 133,
CrossRef Google scholar
[29]
Y.F. Wang, B. Sharma, Y.T. Xu, et al., Switching nanoprecipitates to resist hydrogen embrittlement in high-strength aluminum alloys, Nat. Commun., 13(2022), No. 1, art. No. 6860.
[30]
M. Safyari, N. Khossossi, T. Meisel, P. Dey, T. Prohaska, and M. Moshtaghi, New insights into hydrogen trapping and embrittlement in high strength aluminum alloys, Corros. Sci., 223(2023), art. No. 111453.
[31]
Q. Yan, L.C. Yan, X.L. Pang, and K.W. Gao, Hydrogen trapping and hydrogen embrittlement in 15–5PH stainless steel, Corros. Sci., 205(2022), art. No. 110416.
[32]
Huang LC, Chen DK, Xie DG, et al.. Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron. Nat. Mater., 2023, 22(6): 710,
CrossRef Google scholar
[33]
Zhou CS, Ye BG, Song YY, Cui TC, Xu P, Zhang L. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel. Int. J. Hydrogen Energy, 2019, 44(40): 22547,
CrossRef Google scholar
[34]
Robertson IM, Sofronis P, Nagao A, et al.. Hydrogen embrittlement understood. Metall. Mater. Trans. B, 2015, 46(3): 1085,
CrossRef Google scholar
[35]
Panda A, Davis L, Ramkumar P, Amirthalingam M. The role of retained austenite against hydrogen embrittlement and white etching area formation in bearing steel under dynamic loading. Int. J. Hydrogen Energy, 2024, 58: 1359,
CrossRef Google scholar
[36]
Martin ML, Dadfarnia M, Nagao A, Wang S, Sofronis P. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Mater., 2019, 165: 734,
CrossRef Google scholar
[37]
Novak P, Yuan R, Somerday BP, Sofronis P, Ritchie RO. A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel. J. Mech. Phys. Solids, 2010, 58(2): 206,
CrossRef Google scholar
[38]
Z. Wang, Z.L. Li, X. Zhu, et al., Correlational research of microstructure characteristics and hydrogen induced cracking in hot-rolled Fe–6Mn–0.2C–3Al steels, Corros. Sci., 228(2024), art. No. 111811.
[39]
Kirchheim R. On the solute-defect interaction in the framework of a defactant concept. Int. J. Mater. Res., 2009, 100: 483,
CrossRef Google scholar
[40]
M. Wasim, M.B. Djukic, and T.D. Ngo, Influence of hydrogen-enhanced plasticity and decohesion mechanisms of hydrogen embrittlement on the fracture resistance of steel, Eng. Fail. Anal., 123(2021), art. No. 105312.
[41]
Dwivedi SK, Vishwakarma M. Effect of hydrogen in advanced high strength steel materials. Int. J. Hydrogen Energy, 2019, 44(51): 28007,
CrossRef Google scholar
[42]
Dwivedi SK, Vishwakarma M. Hydrogen embrittlement in different materials: A review. Int. J. Hydrogen Energy, 2018, 43(46): 21603,
CrossRef Google scholar
[43]
Brown BF, Beachem CD. A study of the stress factor in corrosion cracking by use of the pre-cracked cantilever beam specimen. Corros. Sci., 1965, 5(11): 745,
CrossRef Google scholar
[44]
Nagumo M. Function of hydrogen in embrittlement of high-strength steels. ISIJ Int., 2001, 41(6): 590,
CrossRef Google scholar
[45]
Nagumo M. Hydrogen related failure of steels–A new aspect. Mater. Sci. Technol., 2004, 20(8): 940,
CrossRef Google scholar
[46]
Matsumoto R, Seki S, Taketomi S, Miyazaki N. Hydrogen-related phenomena due to decreases in lattice defect energies—Molecular dynamics simulations using the embedded atom method potential with pseudo-hydrogen effects. Comput. Mater. Sci., 2014, 92: 362,
CrossRef Google scholar
[47]
Solanki KN, Ward DK, Bammann DJ. A nanoscale study of dislocation nucleation at the crack tip in the nickel-hydrogen system. Metall. Mater. Trans. A, 2011, 42(2): 340,
CrossRef Google scholar
[48]
M.B. Djukic, G.M. Bakic, V. Sijacki Zeravcic, A. Sedmak, and B. Rajicic, The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion, Eng. Fract. Mech., 216(2019), art. No. 106528.
[49]
Lee HW, Djukic MB, Basaran C. Modeling fatigue life and hydrogen embrittlement of bcc steel with unified mechanics theory. Int. J. Hydrogen Energy, 2023, 48(54): 20773,
CrossRef Google scholar
[50]
Nagao A, Dadfarnia M, Somerday BP, Sofronis P, Ritchie RO. Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels. J. Mech. Phys. Solids, 2018, 112: 403,
CrossRef Google scholar
[51]
Wang S, Martin ML, Sofronis P, Ohnuki S, Hashimoto N, Robertson IM. Hydrogen-induced intergranular failure of iron. Acta Mater., 2014, 69: 275,
CrossRef Google scholar
[52]
Zhong ZQ, Tian ZL, Yang C. Application of EBSD technique in research of hydrogen embrittlement mechanism for high strength martensite stainless steel. Trans. Mater. Heat Treat., 2015, 36(2): 77
[53]
Park IJ, Jeong KH, Jung JG, Lee CS, Lee YK. The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe–18Mn–0.6C twinning-induced plasticity steels. Int. J. Hydrogen Energy, 2012, 37(12): 9925,
CrossRef Google scholar
[54]
Han DK, Lee SK, Noh SJ, Kim SK, Suh DW. Effect of aluminium on hydrogen permeation of high-manganese twinning-induced plasticity steel. Scripta Mater., 2015, 99: 45,
CrossRef Google scholar
[55]
Jin JE, Lee YK. Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel. Acta Mater., 2012, 60(4): 1680,
CrossRef Google scholar
[56]
J.H. Ryu, S.K. Kim, C.S. Lee, D.W. Suh, and H.K.D.H. Bhadeshia, Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe–Mn–C steel, Proc. R. Soc. A., 469(2013), No. 2149, art. No. 20120458.
[57]
Lee SM, Park IJ, Jung JG, Lee YK. The effect of Si on hydrogen embrittlement of Fe–18Mn–0.6C–xSi twinning-induced plasticity steels. Acta Mater., 2016, 103: 264,
CrossRef Google scholar
[58]
Bai PP, Li SW, Cheng J, et al.. Improvement of hydrogen permeation barrier performance by iron sulphide surface films. Int. J. Miner. Metall. Mater., 2023, 30(9): 1792,
CrossRef Google scholar
[59]
J.S. Park, H.R. Bang, S.P. Jung, and S.J. Kim, Effect of plastic strain on corrosion-induced hydrogen infusion and embrittlement behaviors of Zn-coated ultra-high strength steel sheet, Surf. Coat. Technol., 477(2024), art. No. 130335.
[60]
F. Käufer, A. Quade, A. Kruth, and H. Kahlert, Magnetron sputtering as a versatile tool for precise synthesis of hybrid iron oxide–graphite nanomaterial for electrochemical applications, Nanomaterials, 14(2024), No. 3, art. No. 252.
[61]
D. Iadicicco, S. Bassini, M. Vanazzi, et al., Efficient hydrogen and deuterium permeation reduction in Al2O3 coatings with enhanced radiation tolerance and corrosion resistance, Nucl. Fusion, 58(2018), No. 12, art. No. 126007.
[62]
García Ferré F, Bertarelli E, Chiodoni A, et al.. The mechanical properties of a nanocrystalline Al2O3/a-Al2O3 composite coating measured by nanoindentation and Brillouin spectroscopy. Acta Mater., 2013, 61(7): 2662,
CrossRef Google scholar
[63]
Y. Hatano, K. Zhang, and K. Hashizume, Fabrication of ZrO2 coatings on ferritic steel by wet-chemical methods as a tritium permeation barrier, Phys. Scr., 2011(2011), No. T145, art. No. 014044.
[64]
Lu ZX, Zhou QY, Ling YH, Hou BR, Wang JP, Zhang ZJ. Preparation and hydrogen penetration performance of TiO2/TiCx composite coatings. Int. J. Hydrogen Energy, 2020, 45(27): 14048,
CrossRef Google scholar
[65]
M. Tamura and T. Eguchi, Nanostructured thin films for hydrogen-permeation barrier, J. Vac. Sci. Technol. A, 33(2015), No. 4, art. No. 041503.
[66]
Nemanič V, McGuiness PJ, Daneu N, Zajec B, Siketić Z, Waldhauser W. Hydrogen permeation through silicon nitride films. J. Alloys Compd., 2012, 539: 184,
CrossRef Google scholar
[67]
K.J. Shi, X.Y. Meng, S. Xiao, et al., MXene coatings: Novel hydrogen permeation barriers for pipe steels, Nanomaterials, 11(2021), No. 10, art. No. 2737.
[68]
K.J. Shi, S. Xiao, Q.D. Ruan, et al., Hydrogen permeation behavior and mechanism of multi-layered graphene coatings and mitigation of hydrogen embrittlement of pipe steel, Appl. Surf. Sci., 573(2022), art. No. 151529.
[69]
H. Yang, Z.M. Shao, W. Wang, X. Ji, and C.J. Li, A composite coating of GO-Al2O3 for tritium permeation barrier, Fusion Eng. Des., 156(2020), art. No. 111689.
[70]
Jeon HH, Lee SM, Han J, Park IJ, Lee YK. The effect of Zn coating layers on the hydrogen embrittlement of hotdip galvanized twinning-induced plasticity steel. Corros. Sci., 2016, 111: 267,
CrossRef Google scholar
[71]
J. Yoo, S. Kim, M.C. Jo, et al., Effects of Al–Si coating structures on bendability and resistance to hydrogen embrittlement in 1.5-GPa-grade hot-press-forming steel, Acta Mater., 225(2022), art. No. 117561.
[72]
Bhadeshia HKDH. Prevention of hydrogen embrittlement in steels. ISIJ Int., 2016, 56(1): 24,
CrossRef Google scholar
[73]
S.C. Marques, A.V. Castilho, and D.S. dos Santos, Effect of alloying elements on the hydrogen diffusion and trapping in high entropy alloys, Scripta Mater., 201(2021), art. No. 113957.
[74]
Z.C. Xie, Y.J. Wang, C.S. Lu, and L.H. Dai, Sluggish hydrogen diffusion and hydrogen decreasing stacking fault energy in a high-entropy alloy, Mater. Today Commun., 26(2021), art. No. 101902.
[75]
Sidelev DV, Kashkarov EB, Syrtanov MS, Krivobokov VP. Nickel-chromium (Ni–Cr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings. Surf. Coat. Technol., 2019, 369: 69,
CrossRef Google scholar
[76]
Yamabe J, Matsuoka S, Murakami Y. Surface coating with a high resistance to hydrogen entry under high-pressure hydrogen-gas environment. Int. J. Hydrogen Energy, 2013, 38(24): 10141,
CrossRef Google scholar
[77]
Zheng LY, Li HP, Zhou J, et al.. Layer-structured Cr/CrxN coating via electroplating-based nitridation achieving high deuterium resistance as the hydrogen permeation barrier. J. Adv. Ceram., 2022, 11(12): 1944,
CrossRef Google scholar
[78]
M.C. Jo, M.C. Jo, J. Yoo, et al., Strong resistance to hydrogen embrittlement via surface shielding in multi-layered austenite/martensite steel sheets, Mater. Sci. Eng. A, 800(2021), art. No. 140319.
[79]
P.Y. Liu, B.N. Zhang, R.M. Niu, et al., Engineering metal–carbide hydrogen traps in steels, Nat. Commun., 15(2024), No. 1, art. No. 724.
[80]
Echeverri Restrepo S, Di Stefano D, Mrovec M, Paxton AT. Density functional theory calculations of iron - vanadium carbide interfaces and the effect of hydrogen. Int. J. Hydrogen Energy, 2020, 45(3): 2382,
CrossRef Google scholar
[81]
Wei FG, Tsuzaki K. Quantitative analysis on hydrogen trapping of TiC particles in steel. Metall. Mater. Trans. A, 2006, 37(2): 331,
CrossRef Google scholar
[82]
Peng ZX, Liu J, Huang F, Hu Q, Cao CS, Hou SP. Comparative study of non-metallic inclusions on the critical size for HIC initiation and its influence on hydrogen trapping. Int. J. Hydrogen Energy, 2020, 45(22): 12616,
CrossRef Google scholar
[83]
K. Ohsawa, K. Eguchi, H. Watanabe, M. Yamaguchi, and M. Yagi, Configuration and binding energy of multiple hydrogen atoms trapped in monovacancy in bcc transition metals, Phys. Rev. B, 85(2012), No. 9, art. No. 094102.
[84]
Kumnick AJ, Johnson HH. Deep trapping states for hydrogen in deformed iron. Acta Metall., 1980, 28(1): 33,
CrossRef Google scholar
[85]
Picraux ST. Defect trapping of gas atoms in metals. Nucl. Instrum. Meth., 1981, 182–183: 413,
CrossRef Google scholar
[86]
Depover T, Verbeken K. The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe–C–X alloys: An experimental proof of the HELP mechanism. Int. J. Hydrogen Energy, 2018, 43(5): 3050,
CrossRef Google scholar
[87]
D.E. Jiang and E.A. Carter, Diffusion of interstitial hydrogen into and through bcc Fe from first principles, Phys. Rev. B, 70(2004), No. 6, art. No. 064102.
[88]
Silverstein R, Glam B, Eliezer D, Moreno D, Eliezer S. Dynamic deformation of hydrogen charged austenitic-ferritic steels: Hydrogen trapping mechanisms, and simulations. J. Alloys Compd., 2018, 731: 1238,
CrossRef Google scholar
[89]
Ramasubramaniam A, Itakura M, Ortiz M, Carter EA. Effect of atomic scale plasticity on hydrogen diffusion in iron: Quantum mechanically informed and on-the-fly kinetic Monte Carlo simulations. J. Mater. Res., 2008, 23(10): 2757,
CrossRef Google scholar
[90]
Wang MQ, Akiyama E, Tsuzaki K. Effect of hydrogen and stress concentration on the Notch tensile strength of AISI 4135 steel. Mater. Sci. Eng. A, 2005, 398(1–2): 37,
CrossRef Google scholar
[91]
Itakura M, Kaburaki H, Yamaguchi M, Okita T. The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study. Acta Mater., 2013, 61(18): 6857,
CrossRef Google scholar
[92]
Bernstein IM. The effect of hydrogen on the deformation of iron. Scr. Metall., 1974, 8(4): 343,
CrossRef Google scholar
[93]
Wang MQ, Akiyama E, Tsuzaki K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corros. Sci., 2007, 49(11): 4081,
CrossRef Google scholar
[94]
Song EJ, Bhadeshia HKDH, Suh DW. Effect of hydrogen on the surface energy of ferrite and austenite. Corros. Sci., 2013, 77: 379,
CrossRef Google scholar
[95]
Yamasaki S, Takahashi T. Evaluation method of delayed fracture property of high strength steels. Tetsu-to-Hagane, 1997, 83(7): 454,
CrossRef Google scholar
[96]
Depover T, Verbeken K. Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation in Fe–C–V alloys. Mater. Sci. Eng. A, 2016, 675: 299,
CrossRef Google scholar
[97]
Counts WA, Wolverton C, Gibala R. First-principles energetics of hydrogen traps in α-Fe: Point defects. Acta Mater., 2010, 58(14): 4730,
CrossRef Google scholar
[98]
Depover T, Verbeken K. The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe–C–Ti alloys. Corros. Sci., 2016, 112: 308,
CrossRef Google scholar
[99]
Lee JM, Lee T, Kwon YJ, Mun DJ, Yoo JY, Lee CS. Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel. Met. Mater. Int., 2016, 22(3): 364,
CrossRef Google scholar
[100]
Turk A, San Martin D, Rivera-Díaz-del-Castillo PEJ, Galindo-Nava EI. Correlation between vanadium carbide size and hydrogen trapping in ferritic steel. Scripta Mater., 2018, 152: 112,
CrossRef Google scholar
[101]
D. Di Stefano, R. Nazarov, T. Hickel, J. Neugebauer, M. Mrovec, and C. Elsässer, First-principles investigation of hydrogen interaction with TiC precipitates in α-Fe, Phys. Rev. B, 93(2016), No. 18, art. No. 184108.
[102]
Y.A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, and R. Drautz, First-principles study on the interaction of H interstitials with grain boundaries in α- and γ-Fe, Phys. Rev. B, 84(2011), No. 14, art. No. 144121.
[103]
Paxton AT. From quantum mechanics to physical metallurgy of steels. Mater. Sci. Technol., 2014, 30(9): 1063,
CrossRef Google scholar
[104]
Wei FG, Tsuzaki K. Hydrogen absorption of incoherent TiC particles in iron from environment at high temperatures. Metall. Mater. Trans. A, 2004, 35(10): 3155,
CrossRef Google scholar
[105]
E.J. McEniry, T. Hickel, and J. Neugebauer, Hydrogen behaviour at twist{110}grain boundaries in a-Fe, Phil. Trans. R. Soc. A., 375(2017), No. 2098, art. No. 20160402.
[106]
B.Q. Cheng, A.T. Paxton, and M. Ceriotti, Hydrogen diffusion and trapping in α-iron: The role of quantum and anharmonic fluctuations, Phys. Rev. Lett., 120(2018), No. 22, art. No. 225901.
[107]
Ronevich JA, De Cooman BC, Speer JG, De Moor E, Matlock DK. Hydrogen effects in prestrained transformation induced plasticity steel. Metall. Mater. Trans. A, 2012, 43(7): 2293,
CrossRef Google scholar
[108]
Koyama M, Springer H, Merzlikin SV, Tsuzaki K, Akiyama E, Raabe D. Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al-C light weight austenitic steel. Int. J. Hydrogen Energy, 2014, 39(9): 4634,
CrossRef Google scholar
[109]
Krieger W, Merzlikin SV, Bashir A, Szczepaniak A, Springer H, Rohwerder M. Spatially resolved localization and characterization of trapped hydrogen in zero to three dimensional defects inside ferritic steel. Acta Mater., 2018, 144: 235,
CrossRef Google scholar
[110]
Wallaert E, Depover T, Arafin M, Verbeken K. Thermal desorption spectroscopy evaluation of the hydrogen-trapping capacity of NbC and NbN precipitates. Metall. Mater. Trans. A, 2014, 45(5): 2412,
CrossRef Google scholar
[111]
R.J. Shi, Y.L. Wang, S.P. Lu, et al., Enhancing the hydrogen embrittlement resistance with cementite/VC multiple precipitates in high-strength steel, Mater. Sci. Eng. A, 874(2023), art. No. 145084.
[112]
F.T. Dong, J. Venezuela, H.X. Li, et al., Effect of vanadium and rare earth microalloying on the hydrogen embrittlement susceptibility of a Fe–18Mn–0.6C TWIP steel studied using the linearly increasing stress test, Corros. Sci., 185(2021), art. No. 109440.
[113]
Takahashi J, Kawakami K, Tarui T. Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography. Scripta Mater., 2012, 67(2): 213,
CrossRef Google scholar
[114]
Chen YS, Haley D, Gerstl SSA, et al.. Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel. Science, 2017, 355(6330): 1196,
CrossRef Google scholar
[115]
Takahashi J, Kawakami K, Kobayashi Y. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel. Acta Mater., 2018, 153: 193,
CrossRef Google scholar
[116]
Malard B, Remy B, Scott C, et al.. Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering. Mater. Sci. Eng. A, 2012, 536: 110,
CrossRef Google scholar
[117]
J.Y. Fang, C. Xu, Y. Li, R.Z. Peng, and X.J. Fu, Effect of grain orientation and interface coherency on the hydrogen trapping ability of TiC precipitates in a ferritic steel, Mater. Lett., 308(2022), art. No. 131281.
[118]
Jun T, Kazuto K, Yukiko K, Toshimi T. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scripta Mater., 2010, 63(3): 261,
CrossRef Google scholar
[119]
S.Q. Zhang, J.F. Wan, Q.Y. Zhao, et al., Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel, Corros. Sci., 164(2020), art. No. 108345.
[120]
Ohnuma M, Suzuki JI, Wei FG, Tsuzaki K. Direct observation of hydrogen trapped by NbC in steel using small-angle neutron scattering. Scripta Mater., 2008, 58(2): 142,
CrossRef Google scholar
[121]
Chen YS, Lu HZ, Liang JT, et al.. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science, 2020, 367(6474): 171,
CrossRef Google scholar
[122]
Shi RJ, Ma Y, Wang ZD, et al.. Atomic-scale investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces. Acta Mater., 2020, 200: 686,
CrossRef Google scholar
[123]
Wei FG, Hara T, Tsuzaki K. Nano-preciptates design with hydrogen trapping character in high strength steel. Advanced Steels: The Recent Scenario in Steel Science and Technology, 2011 Berlin, Heidelberg Springer 87,
CrossRef Google scholar
[124]
Nagao A, Hayashi K, Oi K, Mitao S. Effect of uniform distribution of fine cementite on hydrogen embrittlement of low carbon martensitic steel plates. ISIJ Int., 2012, 52(2): 213,
CrossRef Google scholar
[125]
Cheng XY, Zhang ZJ, Liu WQ, Wang XJ. Direct observation of hydrogen-trapping sites in newly developed high-strength mooring chain steel by atom probe tomography. Prog. Nat. Sci. Mater. Int., 2013, 23(4): 446,
CrossRef Google scholar
[126]
Zhu X, Li W, Hsu TY, Zhou S, Wang L, Jin XJ. Improved resistance to hydrogen embrittlement in a high-strength steel by quenching–partitioning–tempering treatment. Scripta Mater., 2015, 97: 21,
CrossRef Google scholar
[127]
Fan YH, Zhang B, Yi HL, et al.. The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel. Acta Mater., 2017, 139: 188,
CrossRef Google scholar
[128]
Lee JL, Lee JY. Hydrogen trapping in AISI 4340 steel. Met. Sci., 1983, 17(9): 426,
CrossRef Google scholar
[129]
Frappart S, Oudriss A, Feaugas X, et al.. Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy. Scripta Mater., 2011, 65(10): 859,
CrossRef Google scholar
[130]
Verkhovykh AV, Mirzoev AA, Ruzanova GE, Mirzaev DA, Okishev KY. Interaction of hydrogen atoms with vacancies and divacancies in bcc iron. Mater. Sci. Forum, 2016, 870: 550,
CrossRef Google scholar
[131]
A. Drexler, T. Depover, S. Leitner, K. Verbeken, and W. Ecker, Microstructural based hydrogen diffusion and trapping models applied to Fe–C–X alloys, J. Alloys Compd., 826(2020), art. No. 154057.
[132]
Nagumo M, Takai K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview. Acta Mater., 2019, 165: 722,
CrossRef Google scholar
[133]
Lin YC, Chen D, Chiang MH, Cheng GJ, Lin HC, Yen HW. Response of hydrogen desorption and hydrogen embrittlement to precipitation of nanometer-sized copper in tempered martensitic low-carbon steel. JOM, 2019, 71(4): 1349,
CrossRef Google scholar
[134]
Ma Y, Shi YF, Wang HY, et al.. A first-principles study on the hydrogen trap characteristics of coherent nano-precipitates in α-Fe. Int. J. Hydrogen Energy, 2020, 45(51): 27941,
CrossRef Google scholar
[135]
Drexler A, Depover T, Verbeken K, Ecker W. Model-based interpretation of thermal desorption spectra of Fe–C–Ti alloys. J. Alloys Compd., 2019, 789: 647,
CrossRef Google scholar
[136]
Wei FG, Hara T, Tsuzaki K. High-resolution transmission electron microscopy study of crystallography and morphology of TiC precipitates in tempered steel. Philos. Mag., 2004, 84(17): 1735,
CrossRef Google scholar
[137]
Lin YC, McCarroll IE, Lin YT, Chung WC, Cairney JM, Yen HW. Hydrogen trapping and desorption of dual precipitates in tempered low-carbon martensitic steel. Acta Mater., 2020, 196: 516,
CrossRef Google scholar
[138]
Zhao H, Chakraborty P, Ponge D, et al.. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature, 2022, 602(7897): 437,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/