Enhancing the mechanical properties of casting eutectic high-entropy alloys via W addition

Xu Yang, Dezhi Chen, Li Feng, Gang Qin, Shiping Wu, Ruirun Chen

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (6) : 1364-1372. DOI: 10.1007/s12613-024-2892-x
Research Article

Enhancing the mechanical properties of casting eutectic high-entropy alloys via W addition

Author information +
History +

Abstract

The effect of W element on the microstructure evolution and mechanical properties of Al1.25CoCrFeNi3 eutectic high-entropy alloy and Al1.25CoCrFeNi3−xW x (x = 0, 0.05, 0.1, 0.3, and 0.5; atomic ratio) high-entropy alloys (HEAs) were explored. Results show that the Al1.25CoCrFeNi3−xW x HEAs are composed of face-centered cubic and body-centered cubic (BCC) phases. As W content increases, the microstructure changes from eutectic to dendritic. The addition of W lowers the nucleation barrier of the BCC phase, decreases the valence electron concentration of the HEAs, and replaces Al in the BCC phase, thus facilitating the nucleation of the BCC phase. Tensile results show that the addition of W greatly improves the mechanical properties, and solid-solution, heterogeneous-interface, and second-phase strengthening are the main strengthening mechanisms. The yield strength, tensile strength, and elongation of the Al1.25CoCrFeNi2.95W0.05 HEA are 601.44 MPa, 1132.26 MPa, and 15.94%, respectively, realizing a balance between strength and plasticity. The fracture mode of the Al1.25CoCrFeNi3−xW x HEAs is ductile–brittle mixed fracture, and the crack propagates and initiates in the BCC phase. The eutectic lamellar structure impedes crack propagation and maintains plasticity.

Keywords

high-entropy alloy / microstructure / mechanical property / fracture behavior

Cite this article

Download citation ▾
Xu Yang, Dezhi Chen, Li Feng, Gang Qin, Shiping Wu, Ruirun Chen. Enhancing the mechanical properties of casting eutectic high-entropy alloys via W addition. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(6): 1364‒1372 https://doi.org/10.1007/s12613-024-2892-x

References

[[1]]
S.T. Zhang, X. Ding, X.F. Gao, et al., Dual enhancement in strength and ductility of Ti–V–Zr medium entropy alloy by fracture mode transformation via a heterogeneous structure, Int. J. Plast., 160(2023), art. No. 103505.
[[2]]
Liu JH, Zhao XM, Zhang SM, Sheng YW, Hu Q. Microstructure and mechanical properties of MoNbTaW refractory high-entropy alloy prepared by spark plasma sintering. J. Mater. Res., 2023, 38(2): 484,
CrossRef Google scholar
[[3]]
H. Ren, R.R. Chen, T. Liu, et al., Unraveling the oxidation mechanism of Y-doped AlCoCrFeNi high-entropy alloy at 1100°C, Appl. Surf. Sci., 652(2024), art. No. 159316.
[[4]]
Li YS, Liao WB, Chen HC, et al.. A low-density high-entropy dual-phase alloy with hierarchical structure and exceptional specific yield strength. Sci. China Mater., 2023, 66(2): 780,
CrossRef Google scholar
[[5]]
Cheng Z, Wang SZ, Wu GL, Gao JH, Yang XS, Wu HH. Tribological properties of high-entropy alloys: A review. Int. J. Miner. Metall. Mater., 2022, 29(3): 389,
CrossRef Google scholar
[[6]]
Basu I, de Hosson JThM. Strengthening mechanisms in high entropy alloys: Fundamental issues. Scripta Mater., 2020, 187: 148,
CrossRef Google scholar
[[7]]
Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater., 2017, 122: 448,
CrossRef Google scholar
[[8]]
Wu J, Zhu HG, Xie ZH. Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys. Int. J. Miner. Metall. Mater., 2023, 30(4): 707,
CrossRef Google scholar
[[9]]
Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345(6201): 1153,
CrossRef Pubmed Google scholar
[[10]]
L. Fan, T. Yang, Y.L. Zhao, et al., Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures, Nat. Commun., 11(2020), No. 1, art. No. 6240.
[[11]]
Senkov ON, Gorsse S, Miracle DB. High temperature strength of refractory complex concentrated alloys. Acta Mater., 2019, 175: 394,
CrossRef Google scholar
[[12]]
C. Lee, G. Kim, Y. Chou, et al., Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy, Sci. Adv., 6(2020), No. 37, art. No. eaaz4748.
[[13]]
Xiao N, Guan X, Wang D, et al.. Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review. Int. J. Miner. Metall. Mater., 2023, 30(9): 1667,
CrossRef Google scholar
[[14]]
Y.C. Wu and J.L. Shao, FCC–BCC phase transformation induced simultaneous enhancement of tensile strength and ductility at high strain rate in high-entropy alloy, Int. J. Plast., 169(2023), art. No. 103730.
[[15]]
Han LL, Xu XD, Li ZM, Liu B, Liu CT, Liu Y. A novel equiaxed eutectic high-entropy alloy with excellent mechanical properties at elevated temperatures. Mater. Res. Lett., 2020, 8(10): 373,
CrossRef Google scholar
[[16]]
J. Ren, M. Wu, C.Y. Li, et al., Deformation mechanisms in an additively manufactured dual-phase eutectic high-entropy alloy, Acta Mater., 257(2023), art. No. 119179.
[[17]]
Y.P. Lu, Y. Dong, S. Guo, et al., A promising new class of high-temperature alloys: Eutectic high-entropy alloys, Sci. Rep., 4(2014), art. No. 6200.
[[18]]
J.W. Miao, H.W. Yao, J. Wang, Y.P. Lu, T.M. Wang, and T.J. Li, Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment, J. Alloys Compd., 894(2022), art. No. 162380.
[[19]]
Xiong T, Yang WF, Zheng SJ, et al.. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1. J. Mater. Sci. Technol., 2021, 65: 216,
CrossRef Google scholar
[[20]]
J.J. Shen, J.G. Lopes, Z. Zeng, et al., Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in situ synchrotron X-ray diffraction and postmortem EBSD, Mater. Sci. Eng. A, 872(2023), art. No. 144946.
[[21]]
Duan XT, Han TZ, Guan X, et al.. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates. J. Mater. Sci. Technol., 2023, 136: 97,
CrossRef Google scholar
[[22]]
X. Wang, W. Zhai, J.Y. Wang, and B. Wei, Strength and ductility enhancement of high-entropy FeCoNi2Al0.9 alloy by ultrasonically refining eutectic structures, Scripta Mater., 225(2023), art. No. 115154.
[[23]]
Z.Z. Mao, X. Jin, Z. Xue, M. Zhang, and J.W. Qiao, Understanding the yield strength difference in dual-phase eutectic high-entropy alloys, Mater. Sci. Eng. A, 867(2023), art. No. 144725.
[[24]]
D. Yun, H. Chae, T. Lee, et al., Stress contribution of B2 phase in Al0.7CoCrFeNi eutectic high entropy alloy, J. Alloys Compd., 918(2022), art. No. 165673.
[[25]]
Q.Q. Liu, X.S. Liu, X.F. Fan, et al., Designing novel AlCoCrNi eutectic high entropy alloys, J. Alloys Compd., 904(2022), art. No. 163775.
[[26]]
C. Liu, Y. Gao, K. Chong, F.Q. Guo, D.T. Wu, and Y. Zou, Effect of Nb content on the microstructure and corrosion resistance of FeCoCrNiNbx high-entropy alloys in chloride ion environment, J. Alloys Compd., 935(2023), art. No. 168013.
[[27]]
D. Fang, X. Wu, W.Q. Xu, et al., Microstructure and properties of a novel cost-effective FeNi-based eutectic high entropy alloys, Mater. Sci. Eng. A, 870(2023), art. No. 144919.
[[28]]
X.C. Ye, J.Y. Xiong, X. Wu, et al., A new infinite solid solution strategy to design eutectic high entropy alloys with B2 and BCC structure, Scripta Mater., 199(2021), art. No. 113886.
[[29]]
L. Wang, C. Yao, J. Shen, et al., A new method to design eutectic high-entropy alloys by determining the formation of single-phase solid solution and calculating solidification paths, Mater. Sci. Eng. A, 830(2022), art. No. 142325.
[[30]]
L. Wang, Y.N. Su, C.L. Yao, et al., Microstructure and mechanical property of novel NiAl-based hypoeutectic/eutectic/hypereutectic high-entropy alloy, Intermetallics, 143(2022), art. No. 107476.
[[31]]
Z.S. Yang, Z.J. Wang, Q.F. Wu, et al., Enhancing the mechanical properties of casting eutectic high entropy alloys with Mo addition, Appl. Phys. A, 125(2019), No. 3, art. No. 208.
[[32]]
X.H. Chen, W.Y. Xie, J. Zhu, et al., Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy, Intermetallics, 128(2021), art. No. 107024.
[[33]]
Wu QF, Wang ZJ, Zheng T, et al.. A. Mater. Lett., 2019, 253: 268,
CrossRef Google scholar
[[34]]
Q.F. Wu, F. He, J.J. Li, H.S. Kim, Z.J. Wang, and J.C. Wang, Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile, Nat. Commun., 13(2022), No. 1, art. No. 4697.
[[35]]
Dong Y, Lu YP. Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic AlCoCrFeNi2 high-entropy alloy. J. Mater. Eng. Perform., 2018, 27(1): 109,
CrossRef Google scholar
[[36]]
Malatji N, Lengopeng T, Pityana S, Popoola API. Microstructural, mechanical and electrochemical properties of AlCrFeCuNiWx high entropy alloys. J. Mater. Res. Technol., 2021, 11: 1594,
CrossRef Google scholar
[[37]]
X. Yang, L. Feng, T. Liu, R.R. Chen, G. Qin, and S.P. Wu, Tensile properties and strengthening mechanisms of eutectic high-entropy alloys induced by heterostructure, Mater. Charact., 208(2024), art. No. 113464.
[[38]]
Takeuchi A, Inoue A. Quantitative evaluation of critical cooling rate for metallic glasses. Mater. Sci. Eng. A, 2001, 304–306: 446,
CrossRef Google scholar
[[39]]
V. Soni, O.N. Senkov, B. Gwalani, D.B. Miracle, and R. Banerjee, Microstructural design for improving ductility of an initially brittle refractory high entropy alloy, Sci. Rep., 8(2018), No. 1, art. No. 8816.
[[40]]
Ming KS, Bi XF, Wang J. Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures. Int. J. Plast., 2019, 113: 255,
CrossRef Google scholar
[[41]]
Chen RR, Qin G, Zheng HT, et al.. Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Mater., 2018, 144: 129,
CrossRef Google scholar
[[42]]
Guo S, Ng C, Lu J, Liu CT. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys., 2011, 109(10): 103505,
CrossRef Google scholar
[[43]]
Jiang H, Jiang L, Han KM, et al.. Effects of tungsten on microstructure and mechanical properties of CrFeNiV0.5Wx and CrFeNi2V0.5Wx high-entropy alloys. J. Mater. Eng. Perform., 2015, 24(12): 4594,
CrossRef Google scholar
[[44]]
B. Chanda, G. Potnis, P.P. Jana, and J. Das, A review on nano-/ultrafine advanced eutectic alloys, J. Alloys Compd., 827(2020), art. No. 154226.
[[45]]
Jin X, Bi J, Zhang L, et al.. A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties. J. Alloys Compd., 2019, 770: 655,
CrossRef Google scholar
[[46]]
Jin X, Zhou Y, Zhang L, Du XY, Li BS. A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration. Mater. Des., 2018, 143: 49,
CrossRef Google scholar
[[47]]
L.L. Ma, J.N. Wang, Z.H. Lai, Z.C. Wu, B.T. Yang, and P.P. Zhao, Microstructure and mechanical property of Al56−xCo24Cr20Ni eutectic high-entropy alloys with an ordered FCC/BCT phase structure, J. Alloys Compd., 936(2023), art. No. 168194.
[[48]]
X. Jin, Y.X. Liang, J. Bi, and B.S. Li, Enhanced strength and ductility of Al0.9CoCrNi2.1 eutectic high entropy alloy by thermomechanical processing, Materialia, 10(2020), art. No. 100639.
[[49]]
Q.W. Tian, G.J. Zhang, K.X. Yin, W.L. Cheng, Y.N. Wang, and J.C. Huang, Effect of Ni content on the phase formation, tensile properties and deformation mechanisms of the Ni-rich AlCoCrFeNix (x = 2, 3, 4) high entropy alloys, Mater. Charact., 176(2021), art. No. 111148.
[[50]]
X.X. Liu, S.G. Ma, W.D. Song, D. Zhao, and Z.H. Wang, Microstructure evolution and mechanical response of Co-free Ni2CrFeAl0.3Tix high-entropy alloys, J. Alloys Compd., 931(2023), art. No. 167523.
[[51]]
Basu I, Ocelík V, de Hosson JThM. BCC–FCC interfacial effects on plasticity and strengthening mechanisms in high entropy alloys. Acta Mater., 2018, 157: 83,
CrossRef Google scholar
[[52]]
Huang CX, Wang YF, Ma XL, et al.. Interface affected zone for optimal strength and ductility in heterogeneous laminate. Mater. Today, 2018, 21(7): 713,
CrossRef Google scholar
[[53]]
Zhu YT, Wu XL. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater. Res. Lett., 2019, 7(10): 393,
CrossRef Google scholar
[[54]]
Shi PJ, Zhong YB, Li Y, et al.. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys. Mater. Today, 2020, 41: 62,
CrossRef Google scholar
[[55]]
Chung DH, Lee J, He QF, et al.. Hetero-deformation promoted strengthening and toughening in BCC rich eutectic and near eutectic high entropy alloys. J. Mater. Sci. Technol., 2023, 146: 1,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/