In vitro performance of a biodegradable zinc alloy adjustable-loop cortical suspension fixation for anterior cruciate ligament reconstruction

Ting Wang, Zhangzhi Shi, Hongyong Zhong, Xiangmin Li, Jinling Sun, Wei Yin, Xiaojing Ji, Qiang Wang, Anqi Zhao, Luning Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (5) : 887-898. DOI: 10.1007/s12613-024-2889-5
Research Article

In vitro performance of a biodegradable zinc alloy adjustable-loop cortical suspension fixation for anterior cruciate ligament reconstruction

Author information +
History +

Abstract

Anterior cruciate ligament (ACL) injuries of the knee are one of the most common and serious athletic injuries. The widely used cortical suspension fixation buttons for ligament reconstruction are permanent implants, particularly those made from conventional steel or titanium alloys. In this study, a biodegradable Zn–0.45Mn–0.2Mg (ZMM42) alloy with the yield strength of 300.4 MPa and tensile strength of 329.8 MPa was prepared through hot extrusion. The use of zinc alloys in the preparation of cortical suspension fixation buttons was proposed for the first time. After 35 d of immersion in simulated body fluids, the ZMM42 alloy fixation buttons were degraded at a rate of 44 µm/a, and the fixation strength was retained (379.55 N) in the traction loops. Simultaneously, the ZMM42 alloy fixation buttons exhibited an increase in MC3T3-E1 cell viability and high antibacterial activity against Escherichia coli and Staphylococcus aureus. These results reveal the potential of biodegradable zinc alloys for use as ligament reconstruction materials and for developing diverse zinc alloy cortical suspension fixation devices.

Keywords

anterior cruciate ligament reconstruction / zinc alloy fixation buttons / mechanical property / corrosion behavior / biocompatibility

Cite this article

Download citation ▾
Ting Wang, Zhangzhi Shi, Hongyong Zhong, Xiangmin Li, Jinling Sun, Wei Yin, Xiaojing Ji, Qiang Wang, Anqi Zhao, Luning Wang. In vitro performance of a biodegradable zinc alloy adjustable-loop cortical suspension fixation for anterior cruciate ligament reconstruction. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(5): 887‒898 https://doi.org/10.1007/s12613-024-2889-5

References

[[1]]
Kiapour AM, Murray MM. Basic science of anterior cruciate ligament injury and repair. Bone Joint Res., 2014, 3(2): 20, pmcid: 3922117
CrossRef Pubmed Google scholar
[[2]]
R. Vaishya, A.K. Agarwal, S. Ingole, and V. Vijay, Current trends in anterior cruciate ligament reconstruction: A review, Cureus, 7(2015), No. 11, art. No. e378.
[[3]]
Eysturoy NH, Nissen KA, Nielsen T, Lind M. The influence of graft fixation methods on revision rates after primary anterior cruciate ligament reconstruction. Am. J. Sports Med., 2018, 46(3): 524,
CrossRef Pubmed Google scholar
[[4]]
Lubowitz JH, Ahmad CH, Anderson K. All-inside anterior cruciate ligament graft-link technique: Second-generation, no-incision anterior cruciate ligament reconstruction. Arthroscopy, 2011, 27(5): 717,
CrossRef Pubmed Google scholar
[[5]]
R. Ranjan, S. Gaba, L. Goel, et al., In vivo comparison of a fixed loop (EndoButton CL) with an adjustable loop (TightRope RT) device for femoral fixation of the graft in ACL reconstruction: A prospective randomized study and a literature review, J. Orthop. Surg., 26(2018), No. 3. DOI: https://doi.org/10.1177/2309499018799787.
[[6]]
Chasapis CT, Ntoupa P A, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch. Toxicol., 2020, 94(5): 1443,
CrossRef Pubmed Google scholar
[[7]]
S. Praharaj, M. Skalicky, S. Maitra, et al., Zinc biofortification in food crops could alleviate the zinc malnutrition in human health, Molecules, 26(2021), No. 12, art. No. 3509.
[[8]]
Qiao YQ, Zhang WJ, Tian P, et al.. Stimulation of bone growth following zinc incorporation into biomaterials. Biomaterials, 2014, 35(25): 6882,
CrossRef Pubmed Google scholar
[[9]]
J. Ma, N. Zhao, and D.H. Zhu, Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells, Sci. Rep., 6(2016), art. No. 26661.
[[10]]
Molenda M, Kolmas J. The role of zinc in bone tissue health and regeneration—A review. Biol. Trace Elem. Res., 2023, 201(12): 5640, pmcid: 10620276
CrossRef Pubmed Google scholar
[[11]]
Vojtěch D, Kubásek J, Šerák J, Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater., 2011, 7(9): 3515,
CrossRef Pubmed Google scholar
[[12]]
Bowen PK, Guillory RJ, Shearier ER, et al.. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 56: 467, pmcid: 4529538
CrossRef Pubmed Google scholar
[[13]]
Liu LJ, Meng Y, Volinsky AA, Zhang HJ, Wang LN. Influences of albumin on in vitro corrosion of pure Zn in artificial plasma. Corros. Sci., 2019, 153: 341,
CrossRef Google scholar
[[14]]
Xiao C, Wang LQ, Ren YP, et al.. Indirectly extruded biodegradable Zn–0.05wt%Mg alloy with improved strength and ductility: In vitro and in vivo studies. J. Mater. Sci. Technol., 2018, 34(9): 1618,
CrossRef Google scholar
[[15]]
H.T. Yang, B. Jia, Z.C. Zhang, et al., Alloying design of biodegradable zinc as promising bone implants for load-bearing applications, Nat. Commun., 11(2020), No. 1, art. No. 401.
[[16]]
E.A. Zimmermann, E. Schaible, B. Gludovatz, et al. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions, Sci. Rep., 6(2016), art. No. 21072.
[[17]]
Liu SD, Li W, Li Z, et al.. Preparation and in vitro degradation behavior of biodegradable porous Zn–Li–Ca alloy bone repair scaffolds. J. Mater. Res. Technol., 2024, 28: 1177,
CrossRef Google scholar
[[18]]
Gu XN, Zheng YF. A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. China, 2010, 4(2): 111,
CrossRef Google scholar
[[19]]
Shi ZZ, Li XM, Yao SL, et al.. 300 MPa grade biodegradable high-strength ductile low-alloy (BHSDLA) Zn–Mn–Mg alloys: An in vitro study. J. Mater. Sci. Technol., 2023, 138: 233,
CrossRef Google scholar
[[20]]
Shi ZZ, Yu J, Liu XF. Microalloyed Zn–Mn alloys: From extremely brittle to extraordinarily ductile at room temperature. Mater. Des., 2018, 144: 343,
CrossRef Google scholar
[[21]]
Guo PS, Li FX, Yang LJ, et al.. Ultra-fine-grained Zn–0.5Mn alloy processed by multi-pass hot extrusion: Grain refinement mechanism and room-temperature superplasticity. Mater. Sci. Eng. A, 2019, 748: 262,
CrossRef Google scholar
[[22]]
Zhu XL, Ren TT, Guo PS, et al.. Strengthening mechanism and biocompatibility of degradable Zn–Mn alloy with different Mn content. Mater. Today Commun., 2022, 31: 103639,
CrossRef Google scholar
[[23]]
Jia B, Yang HT, Han Y, et al.. In vitro and in vivo studies of Zn–Mn biodegradable metals designed for orthopedic applications. Acta Biomater., 2020, 108: 358,
CrossRef Pubmed Google scholar
[[24]]
Yu XK, Sun XH, Liu DB, Liang GH, Jin F, Gao JJ. Study on mechanical and degradation behavior of Zn–Mn–xMg alloys under coupling effects of stress and SBF. J. Mater. Res. Technol., 2024, 28: 3960,
CrossRef Google scholar
[[25]]
L.B. Yang, X. Li, L.J. Yang, et al., Effect of Mg contents on the microstructure, mechanical properties and cytocompatibility of degradable Zn–0.5Mn–xMg alloy, J. Funct. Biomater., 14(2023), No. 4, art. No. 195.
[[26]]
Sun J, Zhang X, Shi ZZ, et al.. Development of a high-strength Zn–Mn–Mg alloy for ligament reconstruction fixation. Acta Biomater., 2021, 119: 485,
CrossRef Pubmed Google scholar
[[27]]
Z. Li, Z.Z. Shi, Y. Hao, H.F. Li, H.J. Zhang, X.F. Liu, and L.N. Wang, Insight into role and mechanism of Li on the key aspects of biodegradable Zn–Li alloys: Microstructure evolution, mechanical properties, corrosion behavior and cytotoxicity, Mater. Sci. Eng. C, 114(2020), art. No. 111049.
[[28]]
Murni NS, Dambatta MS, Yeap SK, Froemming GRA, Hermawan H. Cytotoxicity evaluation of biodegradable Zn–3Mg alloy toward normal human osteoblast cells. Mater. Sci. Eng. C, 2015, 49: 560,
CrossRef Google scholar
[[29]]
Bowen PK, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv. Mater., 2013, 25(18): 2577,
CrossRef Pubmed Google scholar
[[30]]
J. Young and R.G. Reddy, Synthesis, mechanical properties, and in vitro corrosion behavior of biodegradable Zn–Li–Cu alloys, J. Alloys Compd., 844(2020), art. No. 156257.
[[31]]
Yang HT, Qu XH, Lin WJ, et al.. In vitro. Acta Biomater., 2018, 71: 200,
CrossRef Pubmed Google scholar
[[32]]
Venezuela J, Dargusch MS. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater., 2019, 87: 1,
CrossRef Pubmed Google scholar
[[33]]
Liu X, Yang HT, Xiong P, Li WT, Huang HH, Zheng YF. Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions. Corros. Sci., 2019, 157: 205,
CrossRef Google scholar
[[34]]
Liu LJ, Meng Y, Dong CF, Yan Y, Volinsky AA, Wang LN. Initial formation of corrosion products on pure zinc in simulated body fluid. J. Mater. Sci. Technol., 2018, 34(12): 2271,
CrossRef Google scholar
[[35]]
Chen Z, Yao JP, Zhao JL, Wang SG. Injectable wound dressing based on carboxymethyl chitosan triple-network hydrogel for effective wound antibacterial and hemostasis. Int. J. Biol. Macromol., 2023, 225: 1235,
CrossRef Pubmed Google scholar
[[36]]
Lin JX, Tong X, Shi ZM, et al.. A biodegradable Zn–1Cu–0.1Ti alloy with antibacterial properties for orthopedic applications. Acta Biomater., 2020, 106: 410,
CrossRef Pubmed Google scholar
[[37]]
Tong X, Shi ZM, Xu LC, et al.. Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn–Cu metal foams as potential biodegradable bone implants. Acta Biomater., 2020, 102: 481,
CrossRef Pubmed Google scholar
[[38]]
Lee SG, Kim B, Sohn SS, Kim WG, Um KK, Lee S. Effects of local-brittle-zone (LBZ) microstructures on crack initiation and propagation in three Mo-added high-strength low-alloy (HSLA) steels. Mater. Sci. Eng. A, 2019, 760: 125,
CrossRef Google scholar
[[39]]
U. Masood Chaudry, K. Hamad, and J.G. Kim, A further improvement in the room-temperature formability of magnesium alloy sheets by pre-stretching, Materials, 13(2020), No. 11, art. No. 2633.
[[40]]
J. Sun, X. Zhang, Z.Z. Shi, et al. Adjusting comprehensive properties of biodegradable Zn–Mn alloy through solution heat-treatment, Mater. Today Commun., 23(2020), art. No. 101150.
[[41]]
G. Leslie, K. Winwood, A. Sanderson, P. Zioupos, and T. Allen, Feasibility of additively manufacturing synthetic bone for sports personal protective equipment applications, Ann. 3D Print. Med., 12(2023), art. No. 100121.
[[42]]
Winiarski J, Tylus W, Szczygieł B. EIS and XPS investigations on the corrosion mechanism of ternary Zn–Co–Mo alloy coatings in NaCl solution. Appl. Surf. Sci., 2016, 364: 455,
CrossRef Google scholar
[[43]]
Bian D, Zhou XC, Liu JN, et al.. Degradation behaviors and in-vivo biocompatibility of a rare earth- and aluminum-free magnesium-based stent. Acta Biomater., 2021, 124: 382,
CrossRef Pubmed Google scholar
[[44]]
Qu Q, Li L, Bai W, Yan CW, Cao CN. Effects of NaCl and NH4Cl on the initial atmospheric corrosion of zinc. Corros. Sci., 2005, 47(11): 2832,
CrossRef Google scholar
[[45]]
X. Zhao, X. Zhou, H. Sun, et al., 3D printed Ti–5Cu alloy accelerates osteogenic differentiation of MC3T3-E1 cells by stimulating the M2 phenotype polarization of macrophages, Front. Immunol., 13(2022), art. No. 1001526.
[[46]]
Kubásek J, Vojtěch D, Jablonská E, Pospíšilová I, Lipov J, Ruml T. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys. Mater. Sci. Eng. C, 2016, 58: 24,
CrossRef Google scholar
[[47]]
Markolf KL, O’Neill G, Jackson SR, McAllister DR. Effects of applied quadriceps and hamstrings muscle loads on forces in the anterior and posterior cruciate ligaments. Am. J. Sports Med., 2004, 32(5): 1144,
CrossRef Pubmed Google scholar
[[48]]
Hermann A, Jung A, Gruen A, Brucker PU, Senner V. A lower leg surrogate study to investigate the effect of quadriceps-hamstrings activation ratio on ACL tensile force. J. Sci. Med. Sport, 2022, 25(9): 770,
CrossRef Pubmed Google scholar
[[49]]
Ma J, Zhao N, Zhu DH. Endothelial cellular responses to biodegradable metal zinc. ACS Biomater. Sci. Eng., 2015, 1(11): 1174, pmcid: 5038919
CrossRef Pubmed Google scholar
[[50]]
Sun JL, Feng Y, Shi ZZ, et al.. Biodegradable Zn–0.5Li alloy rib plate: Processing procedure development and in vitro performance evaluation. J. Mater. Sci. Technol., 2023, 141: 245,
CrossRef Google scholar
[[51]]
Su YC, Wang K, Gao JL, et al.. Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials. Acta Biomater., 2019, 98: 174, pmcid: 6766429
CrossRef Pubmed Google scholar

Accesses

Citations

Detail

Sections
Recommended

/