Effect of two-step solid solution on microstructure and δ phase precipitation of Inconel 718 alloy
Enyu Liu, Qingshuang Ma, Xintong Li, Aoxue Gao, Jing Bai, Liming Yu, Qiuzhi Gao, Huijun Li
Effect of two-step solid solution on microstructure and δ phase precipitation of Inconel 718 alloy
Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace, automotive, and energy industries owing to its extraordinary thermomechanical properties. The effects of different two-step solid solution treatments on microstructure and δ phase precipitation of Inconel 718 alloy were studied, and the transformation mechanism from γ″ metastable phase to δ phase was clarified. The precipitates were statistically analyzed by X-ray diffractometry. The results show that the δ phase content firstly increased, and then decreased with the temperature of the second-step solid solution. The changes in microstructure and δ phase were studied by scanning electron microscopy and transmission electron microscopy. An intragranular δ phase formed in Inconel 718 alloy at the second-step solid solution temperature of 925°C, and its orientation relationship with γ matrix was determined as
Inconel 718 alloy / two-step solid solution treatment / δ phase / γ″–δ transformation
[[1]] |
F. Theska, A. Stanojevic, B. Oberwinkler, and S. Primig, Microstructure-property relationships in directly aged Alloy 718 turbine disks, Mater. Sci. Eng. A, 776(2020), art. No. 138967.
|
[[2]] |
A. Balan, M. Perez, T. Chaise, et al., Precipitation of γ″ in Inconel 718 alloy from microstructure to mechanical properties, Materialia, 20(2021), art. No. 101187.
|
[[3]] |
|
[[4]] |
A. De Bartolomeis, S.T. Newman, I.S. Jawahir, D. Biermann, and A. Shokrani, Future research directions in the machining of Inconel 718, J. Mater. Process. Technol., 297(2021), art. No. 117260.
|
[[5]] |
E.M. Fayed, D. Shahriari, M. Saadati, V. Brailovski, M. Jahazi, and M. Medraj, Influence of homogenization and solution treatments time on the microstructure and hardness of inconel 718 fabricated by laser powder bed fusion process, Materials, 13(2020), No. 11, art. No. 2574.
|
[[6]] |
|
[[7]] |
|
[[8]] |
J. Ding, S. Xue, Z. Shang, et al., Characterization of precipitation in gradient Inconel 718 superalloy, Mater. Sci. Eng. A, 804(2021), art. No. 140718.
|
[[9]] |
|
[[10]] |
|
[[11]] |
|
[[12]] |
S.A. Mantri, S. Dasari, A. Sharma, et al., Effect of micro-segregation of alloying elements on the precipitation behaviour in laser surface engineered Alloy 718, Acta Mater., 210(2021), art. No. 116844.
|
[[13]] |
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
R.S. Huang, Y.A. Sun, L.L. Xing, G.L. Song, W. Liu, and Q.L. Li, Effect of gradient microstructure pinned by δ phase on elevated temperature performances of GH4169, Mater. Sci. Eng. A, 774(2020), art. No. 138913.
|
[[18]] |
E.M. Fayed, M. Saadati, D. Shahriari, V. Brailovski, M. Jahazi, and M. Medraj, Effect of homogenization and solution treatments time on the elevated-temperature mechanical behavior of Inconel 718 fabricated by laser powder bed fusion, Sci. Rep., 11(2021), art. No. 2020.
|
[[19]] |
|
[[20]] |
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
P.K. Bai, P.C. Huo, J. Wang, et al., Microstructural evolution and mechanical properties of Inconel 718 alloy manufactured by selective laser melting after solution and double aging treatments, J. Alloys Compd., 911(2022), art. No. 164988.
|
[[25]] |
|
[[26]] |
X.L. An, L. Zhou, B. Zhang, et al., Inconel 718 treated with two-stage solution and aging processes: Microstructure evolution and enhanced properties, Mater. Res. Express, 6(2019), No. 7, art. No. 075803.
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
W. Le, Z.W. Chen, K. Yan, et al., Early evolution of δ phase and coarse γ″ phase in Inconel 718 alloy with high temperature ageing, Mater. Charact., 180(2021), art. No. 111403.
|
[[31]] |
|
[[32]] |
M. Dehmas, J. Lacaze, A. Niang, and B. Viguier, TEM study of high-temperature precipitation of delta phase in Inconel 718 alloy, Adv. Mater. Sci. Eng., 2011(2011), No. 1, art. No. 940634.
|
[[33]] |
|
[[34]] |
|
[[35]] |
|
[[36]] |
|
[[37]] |
|
[[38]] |
|
[[39]] |
|
[[40]] |
|
[[41]] |
|
/
〈 | 〉 |