Characterization of local chemical ordering and deformation behavior in high entropy alloys by transmission electron microscopy

Qiuhong Liu , Qing Du , Xiaobin Zhang , Yuan Wu , Andrey A. Rempel , Xiangyang Peng , Xiongjun Liu , Hui Wang , Wenli Song , Zhaoping Lü

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (5) : 877 -886.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (5) : 877 -886. DOI: 10.1007/s12613-024-2884-x
Invited Review

Characterization of local chemical ordering and deformation behavior in high entropy alloys by transmission electron microscopy

Author information +
History +
PDF

Abstract

Short-range ordering (SRO) is one of the most important structural features of high entropy alloys (HEAs). However, the chemical and structural analyses of SROs are very difficult due to their small size, complexed compositions, and varied locations. Transmission electron microscopy (TEM) as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys. In this short communication, we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs. By using advanced TEM techniques, not only the existence of SROs was confirmed, but also the effect of SROs on the deformation mechanism was clarified. Moreover, the perspective related to application of TEM techniques in HEAs are also discussed.

Keywords

high entropy alloys / transmission electron microscopy / short-range ordering / deformation mechanisms

Cite this article

Download citation ▾
Qiuhong Liu, Qing Du, Xiaobin Zhang, Yuan Wu, Andrey A. Rempel, Xiangyang Peng, Xiongjun Liu, Hui Wang, Wenli Song, Zhaoping Lü. Characterization of local chemical ordering and deformation behavior in high entropy alloys by transmission electron microscopy. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(5): 877-886 DOI:10.1007/s12613-024-2884-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci., 2014, 61, 1.

[2]

Yi JJ, Cao FY, Xu MQ, Yang L, Wang L, Zeng L. Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi. Int. J. Miner. Metall. Mater., 2022, 29(6): 1231.

[3]

Wu J, Zhu HG, Xie ZH. Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys. Int. J. Miner. Metall. Mater., 2023, 30(4): 707.

[4]

Xiao N, Guan X, Wang D, et al. Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review. Int. J. Miner. Metall. Mater., 2023, 30(9): 1667.

[5]

Lu ZP, Lei ZF, Huang HL, et al. Deformation behavior and toughening of high-entropy alloys. Acta Metall. Sin., 2018, 54(11): 1553.

[6]

Ye YF, Wang Q, Lu J, Liu CT, Yang Y. High-entropy alloy: Challenges and prospects. Mater. Today, 2016, 19(6): 349.

[7]

Saha D, Bøjesen ED, Mamakhel AH, Bremholm M, Iversen BB. In situ PDF study of the nucleation and growth of intermetallic PtPb nanocrystals. Chemnanomat, 2017, 3(7): 472.

[8]

Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater., 2016, 106, 87.

[9]

L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.K. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw, Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy, Nat. Commun., 6(2015), art. No. 5964.

[10]

Han D, Guan XJ, Yan Y, Shi F, Li XW. Anomalous recovery of work hardening rate in Cu–Mn alloys with high stacking fault energies under uniaxial compression. Mater. Sci. Eng. A, 2019, 743, 745.

[11]

Clément N, Caillard D, Martin JL. Heterogeneous deformation of concentrated NiCr F.C.C. alloys: Macroscopic and microscopic behaviour. Acta Metall., 1984, 32(6): 961.

[12]

Chen XF, Wang ZC, Zhong XY. Developments of energy-filtered transmission electron microscopy. J. Chin. Electron Microsc. Soc., 2018, 37(5): 540.

[13]

Tamm A, Aabloo A, Klintenberg M, Stocks M, Caro A. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys. Acta Mater., 2015, 99, 307.

[14]

R.P. Zhang, S.T. Zhao, C. Ophus, et al., Direct imaging of short-range order and its impact on deformation in Ti–6Al, Sci. Adv., 5(2019), No. 12, art. No. eaax2799.

[15]

Lei ZF, Liu XJ, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563, 546.

[16]

Antillon E, Woodward C, Rao SI, Akdim B, Parthasarathy TA. Chemical short range order strengthening in a model FCC high entropy alloy. Acta Mater., 2020, 190, 29.

[17]

Q.J. Li, H. Sheng, and E. Ma, Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways, Nat. Commun., 10(2019), No. 1, art. No. 3563.

[18]

Guo W, Dmowski W, Noh JY, Rack P, Liaw PK, Egami T. Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study. Metall. Mater. Trans. A, 2013, 44(5): 1994.

[19]

M.Y. Jiao, Z.F. Lei, Y. Wu, et al., Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys, Nat. Commun., 14(2023), No. 1, art. No. 806.

[20]

I. Lazić and E.G.T. Bosch, Chapter three–Analytical review of direct stem imaging techniques for thin samples, [in] P.W. Hawkes, ed., Advances in Imaging and Electron Physics, Volume 199, 2017, p. 75.

[21]

Lazic I, Bosch EG, Lazar S, Wirix M, Yücelen E. Integrated differential phase contrast (iDPC)–Direct phase imaging in STEM for thin samples. Microsc. Microanal., 2016, 22(S3): 36.

[22]

E. Yücelen, I. Lazić, and E.G.T. Bosch, Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution, Sci. Rep., 8(2018), No. 1, art. No. 2676.

[23]

Y. Zhang, W.B. Wang, W.D. Xing, et al., Effect of oxygen interstitial ordering on multiple order parameters in rare earth ferrite, Phys. Rev. Lett., 123(2019), No. 24, art. No. 247601.

[24]

Ding QQ, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature, 2019, 574, 223.

[25]

S. Dasari, A. Sharma, C. Jiang, et al. Srinivasan, and R. Banerjee, Exceptional enhancement of mechanical properties in high-entropy alloys via thermodynamically guided local chemical ordering, Proc. Natl. Acad. Sci. U.S.A., 120(2023), No. 23, art. No. e2211787120.

[26]

Wang L, Ding J, Chen SS, et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys. Nat. Mater., 2023, 22(8): 950.

[27]

Chen XF, Wang Q, Cheng ZY, et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature, 2021, 592(7856): 712.

[28]

H.Z. Sha, J.Z. Cui, and R. Yu, Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction, Sci. Adv., 8(2022), No. 19, art. No. eabn2275.

[29]

Chen Z, Jiang Y, Shao YT, et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science, 2021, 372(6544): 826.

[30]

C. Liu, J.Z. Cui, Z.Y. Cheng, et al., Direct observation of oxygen atoms taking tetrahedral interstitial sites in medium-entropy body-centered-cubic solutions, Adv. Mater., 35(2023), No. 13, art. No. e2209941.

[31]

Moniri S, Yang Y, Ding J, et al. Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys. Nature, 2023, 624(7992): 564.

[32]

Yang Y, Zhou JH, Zhu F, et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature, 2021, 592(7852): 60.

[33]

S. Tang, T.Z. Xin, W.Q. Xu, et al., Precipitation strengthening in an ultralight magnesium alloy, Nat. Commun., 10(2019), No. 1, art. No. 1003.

[34]

Z.P. Xiong, I. Timokhina, and E. Pereloma, Clustering, nanoscale precipitation and strengthening of steels, Prog. Mater. Sci, 118(2021), art. No. 100764.

[35]

Zhou XL, Feng ZQ, Zhu LL, et al. High-pressure strengthening in ultrafine-grained metals. Nature, 2020, 579(7797): 67.

[36]

Buban JP, Matsunaga K, Chen J, et al. Grain boundary strengthening in alumina by rare earth impurities. Science, 2006, 311(5758): 212.

[37]

H.Y. Lin, P. Hua, K. Huang, Q. Li, and Q.P. Sun, Grain boundary and dislocation strengthening of nanocrystalline NiTi for stable elastocaloric cooling, Scripta Mater., 226(2023), art. No. 115227.

[38]

Pan ZD, Wu K, Zhao XD, Lin Y, Zhang WK. Development of ultra high strength non-oriented silicon steel by dislocation strengthening. Iron Steel, 2023, 58(3): 111.

[39]

M.S. Lucas, G.B. Wilks, L. Mauger, et al., Absence of longrange chemical ordering in equimolar FeCoCrNi, Appl. Phys. Lett., 100(2012), No. 25, art. No. 251907.

[40]

Yeh JW, Chang SY, der Hong Y, Chen SK, Lin SJ. Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Mater. Chem. Phys., 2007, 103(1): 41.

[41]

S.T. Zhao, Z.Z. Li, C.Y. Zhu, et al., Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy, Sci. Adv., 7(2021), No. 5, art. No. eabb3108.

[42]

Xiong T, Yang WF, Zheng SJ, et al. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1. J. Mater. Sci. Technol., 2021, 65, 216.

[43]

Z.J. Zhang, M.M. Mao, J.W. Wang, et al., Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat. Commun., 6(2015), art. No. 10143.

[44]

Liu SF, Wu Y, Wang HT, et al. Stacking fault energy of face-centered-cubic high entropy alloys. Intermetallics, 2018, 93, 269.

[45]

Deng Y, Tasan CC, Pradeep KG, Springer H, Kostka A, Raabe D. Design of a twinning-induced plasticity high entropy alloy. Acta Mater., 2015, 94, 124.

[46]

K. Jiang, Q. Zhang, J.G. Li, et al., Abnormal hardening and amorphization in an FCC high entropy alloy under extreme uniaxial tension, Int. J. Plast, 159(2022), art. No. 103463.

[47]

Laplanche G, Kostka A, Reinhart C, Hunfeld J, Eggeler G, George EP. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater., 2017, 128, 292.

[48]

H. Wang, D.K. Chen, X.H. An, et al., Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy, Sci. Adv., 7(2021), No. 14, art. No. eabe3105.

[49]

R.M. Niu, X.H. An, L.L. Li, Z.F. Zhang, Y.W. Mai, and X.Z. Liao, Mechanical properties and deformation behaviours of sub-micron-sized Cu–Al single crystals, Acta Mater., 223(2022), art. No. 117460.

[50]

Ding JQ, Zuo JD, Wang YQ, et al. Progress in the local chemical short-range order of multi-principal alloys. Rare Met. Mater. Eng., 2023, 52(4): 1507.

[51]

L.T.W. Smith, Y.Q. Su, S.Z. Xu, A. Hunter, and I.J. Beyerlein, The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy, Int. J. Plast., 134(2020), art. No. 102850.

[52]

Zhao YK, Park JM, Jang JI, Ramamurty U. Bimodality of incipient plastic strength in face-centered cubic high-entropy alloys. Acta Mater., 2021, 202, 124.

[53]

Han D, Wang ZY, Yan Y, Shi F, Li XW. A good strength-ductility match in Cu–Mn alloys with high stacking fault energies: Determinant effect of short range ordering. Scripta Mater., 2017, 133, 59.

[54]

Zhang YJ, Han D, Li XW. A unique two-stage strength-ductility match in low solid-solution hardening Ni–Cr alloys: Decisive role of short range ordering. Scripta Mater., 2020, 178, 269.

[55]

Bu YQ, Wu Y, Lei ZF, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys. Mater. Today, 2021, 46, 28.

[56]

Gerold V, Karnthaler HP. On the origin of planar slip in f.c.c. alloys. Acta Metall., 1989, 37(8): 2177.

[57]

Rao SI, Varvenne C, Woodward C, et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy. Acta Mater., 2017, 125, 311.

[58]

Z.F. He, Y.X. Guo, L.F. Sun, et al., Interstitial-driven local chemical order enables ultrastrong face-centered cubic multicomponent alloys, Acta Mater., 243(2023), art. No. 118495.

[59]

F. Zhang, Y. Wu, H.B. Lou, et al. Polymorphism in a high-entropy alloy, Nat. Commun., 8(2017), art. No. 15687.

[60]

Ding J, Yu Q, Asta M, Ritchie RO. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc. Natl. Acad. Sci. U.S.A., 2018, 115(36): 8919.

[61]

Zhang RP, Zhao ST, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature, 2020, 581(7808): 283.

[62]

Z.C. Xie, W.R. Jian, S.Z. Xu, et al., Phase transition in medium entropy alloy CoCrNi under quasi-isentropic compression, Int. J. Plast., 157(2022), No. 1, art. No. 103389.

[63]

Walsh F, Zhang MW, Ritchie RO, Minor AM, Asta M. Extra electron reflections in concentrated alloys do not necessitate short-range order. Nat. Mater., 2023, 22(8): 926.

[64]

Frely E, Beuneu B, Barbu A, Jaskierowicz G. Short and long-range ordering of (Ni0.67Cr0.33)1−xFex alloys under electron irradiation. MRS Online Proc. Lib., 1996, 439(1): 373.

[65]

Sagaradze VV, Kositsyna II, Arbuzov VL, Shabashov VA, Filippov YI. Phase transformations in Fe–Cr alloys upon thermal aging and electron irradiation. Phys. Met. Metall., 2001, 92(5): 508.

[66]

Banerjee S. In-situ studies on phase transformations under electron irradiation in a high voltage electron microscope. Sadhana, 2003, 28(3): 799.

AI Summary AI Mindmap
PDF

228

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/