Characterization of local chemical ordering and deformation behavior in high entropy alloys by transmission electron microscopy
Qiuhong Liu, Qing Du, Xiaobin Zhang, Yuan Wu, Andrey A. Rempel, Xiangyang Peng, Xiongjun Liu, Hui Wang, Wenli Song, Zhaoping Lü
Characterization of local chemical ordering and deformation behavior in high entropy alloys by transmission electron microscopy
Short-range ordering (SRO) is one of the most important structural features of high entropy alloys (HEAs). However, the chemical and structural analyses of SROs are very difficult due to their small size, complexed compositions, and varied locations. Transmission electron microscopy (TEM) as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys. In this short communication, we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs. By using advanced TEM techniques, not only the existence of SROs was confirmed, but also the effect of SROs on the deformation mechanism was clarified. Moreover, the perspective related to application of TEM techniques in HEAs are also discussed.
high entropy alloys / transmission electron microscopy / short-range ordering / deformation mechanisms
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.K. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw, Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy, Nat. Commun., 6(2015), art. No. 5964.
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
R.P. Zhang, S.T. Zhao, C. Ophus, et al., Direct imaging of short-range order and its impact on deformation in Ti–6Al, Sci. Adv., 5(2019), No. 12, art. No. eaax2799.
|
[15] |
|
[16] |
|
[17] |
Q.J. Li, H. Sheng, and E. Ma, Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways, Nat. Commun., 10(2019), No. 1, art. No. 3563.
|
[18] |
|
[19] |
M.Y. Jiao, Z.F. Lei, Y. Wu, et al., Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys, Nat. Commun., 14(2023), No. 1, art. No. 806.
|
[20] |
I. Lazić and E.G.T. Bosch, Chapter three–Analytical review of direct stem imaging techniques for thin samples, [in] P.W. Hawkes, ed., Advances in Imaging and Electron Physics, Volume 199, 2017, p. 75.
|
[21] |
|
[22] |
E. Yücelen, I. Lazić, and E.G.T. Bosch, Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution, Sci. Rep., 8(2018), No. 1, art. No. 2676.
|
[23] |
Y. Zhang, W.B. Wang, W.D. Xing, et al., Effect of oxygen interstitial ordering on multiple order parameters in rare earth ferrite, Phys. Rev. Lett., 123(2019), No. 24, art. No. 247601.
|
[24] |
|
[25] |
S. Dasari, A. Sharma, C. Jiang, et al. Srinivasan, and R. Banerjee, Exceptional enhancement of mechanical properties in high-entropy alloys via thermodynamically guided local chemical ordering, Proc. Natl. Acad. Sci. U.S.A., 120(2023), No. 23, art. No. e2211787120.
|
[26] |
|
[27] |
|
[28] |
H.Z. Sha, J.Z. Cui, and R. Yu, Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction, Sci. Adv., 8(2022), No. 19, art. No. eabn2275.
|
[29] |
|
[30] |
C. Liu, J.Z. Cui, Z.Y. Cheng, et al., Direct observation of oxygen atoms taking tetrahedral interstitial sites in medium-entropy body-centered-cubic solutions, Adv. Mater., 35(2023), No. 13, art. No. e2209941.
|
[31] |
|
[32] |
|
[33] |
S. Tang, T.Z. Xin, W.Q. Xu, et al., Precipitation strengthening in an ultralight magnesium alloy, Nat. Commun., 10(2019), No. 1, art. No. 1003.
|
[34] |
Z.P. Xiong, I. Timokhina, and E. Pereloma, Clustering, nanoscale precipitation and strengthening of steels, Prog. Mater. Sci, 118(2021), art. No. 100764.
|
[35] |
|
[36] |
|
[37] |
H.Y. Lin, P. Hua, K. Huang, Q. Li, and Q.P. Sun, Grain boundary and dislocation strengthening of nanocrystalline NiTi for stable elastocaloric cooling, Scripta Mater., 226(2023), art. No. 115227.
|
[38] |
|
[39] |
M.S. Lucas, G.B. Wilks, L. Mauger, et al., Absence of longrange chemical ordering in equimolar FeCoCrNi, Appl. Phys. Lett., 100(2012), No. 25, art. No. 251907.
|
[40] |
|
[41] |
S.T. Zhao, Z.Z. Li, C.Y. Zhu, et al., Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy, Sci. Adv., 7(2021), No. 5, art. No. eabb3108.
|
[42] |
|
[43] |
Z.J. Zhang, M.M. Mao, J.W. Wang, et al., Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat. Commun., 6(2015), art. No. 10143.
|
[44] |
|
[45] |
|
[46] |
K. Jiang, Q. Zhang, J.G. Li, et al., Abnormal hardening and amorphization in an FCC high entropy alloy under extreme uniaxial tension, Int. J. Plast, 159(2022), art. No. 103463.
|
[47] |
|
[48] |
H. Wang, D.K. Chen, X.H. An, et al., Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy, Sci. Adv., 7(2021), No. 14, art. No. eabe3105.
|
[49] |
R.M. Niu, X.H. An, L.L. Li, Z.F. Zhang, Y.W. Mai, and X.Z. Liao, Mechanical properties and deformation behaviours of sub-micron-sized Cu–Al single crystals, Acta Mater., 223(2022), art. No. 117460.
|
[50] |
|
[51] |
L.T.W. Smith, Y.Q. Su, S.Z. Xu, A. Hunter, and I.J. Beyerlein, The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy, Int. J. Plast., 134(2020), art. No. 102850.
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
Z.F. He, Y.X. Guo, L.F. Sun, et al., Interstitial-driven local chemical order enables ultrastrong face-centered cubic multicomponent alloys, Acta Mater., 243(2023), art. No. 118495.
|
[59] |
F. Zhang, Y. Wu, H.B. Lou, et al. Polymorphism in a high-entropy alloy, Nat. Commun., 8(2017), art. No. 15687.
|
[60] |
|
[61] |
|
[62] |
Z.C. Xie, W.R. Jian, S.Z. Xu, et al., Phase transition in medium entropy alloy CoCrNi under quasi-isentropic compression, Int. J. Plast., 157(2022), No. 1, art. No. 103389.
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
/
〈 | 〉 |