Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment
Jianghao Wen, Di Lan, Yiqun Wang, Lianggui Ren, Ailing Feng, Zirui Jia, Guanglei Wu
Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment
Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness. In this study, KOH was evenly distributed on biomass Tremella using the swelling induction method, leading to the preparation of a three-dimensional network-structured hierarchical porous carbon (HPC) through carbonization. The achieved microwave absorption intensity is robust at −47.34 dB with a thin thickness of 2.1 mm. Notably, the widest effective absorption bandwidth, reaching 7.0 GHz (11–18 GHz), is attained at a matching thickness of 2.2 mm. The exceptional broadband and reflection loss performance are attributed to the 3D porous networks, interface effects, carbon network defects, and dipole relaxation. HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant. The uniform pore structures considerably optimize the impedance-matching performance of the material, while the abundance of interfaces and defects enhances the dielectric loss, thereby improving the attenuation constant. Furthermore, the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated. This research presents a strategy for preparing absorbing materials using biomass-derived HPC, showcasing considerable potential in the field of electromagnetic wave absorption.
biomass / hierarchical porous carbon / dielectric loss / electromagnetic wave absorption
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
X. Li, D.M. Xu, D. Zhou, et al., Magnetic array vertically anchored on flexible carbon cloth with “magical angle” for the increased effective absorption bandwidth and improved reflection loss simultaneously, Carbon, 210(2023), art. No. 118046.
|
[6] |
T.B. Zhao, Z.R. Jia, Y. Zhang, and G.L. Wu, Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption, Small, 19(2023), No. 6, art. No. 2206323.
|
[7] |
X.L. Cao, D. Lan, Y. Zhang, Z.R. Jia, G.L. Wu, and P.F. Yin, Construction of three-dimensional conductive network and heterogeneous interfaces via different ratio for tunable microwave absorption, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 187.
|
[8] |
J. Yan, Q. Zheng, S.P. Wang, et al., Multifunctional organic-inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices, Adv. Mater., 35(2023), No. 25, art. No. 2300015.
|
[9] |
Z. Zhang, H.Q. Zhao, W.H. Gu, L.J. Yang, and B.S. Zhang, A biomass derived porous carbon for broadband and lightweight microwave absorption, Sci. Rep., 9(2019), No. 1, art. No. 18617.
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
X.L. Chen, F. Zhang, D. Lan, et al., State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: From the perspective of nitrogen source, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 220.
|
[16] |
Y.J. Wang, Y. Sun, Y. Zong, et al., Carbon nanofibers supported by FeCo nanocrystals as difunctional magnetic/dielectric composites with broadband microwave absorption performance, J. Alloys Compd., 824(2020), art. No. 153980.
|
[17] |
T.B. Zhao, Z.R. Jia, J.K. Liu, Y. Zhang, G.L. Wu, and P.F. Yin, Multiphase interfacial regulation based on hierarchical porous molybdenum selenide to build anticorrosive and multiband tailorable absorbers, Nano-Micro Lett., 16(2023), No. 1, art. No. 6.
|
[18] |
|
[19] |
|
[20] |
|
[21] |
Z.H. Zhou, X.F. Zhou, D. Lan, et al., Modulation engineering of electromagnetic wave absorption performance of layered double hydroxides derived hollow metal carbides integrating corrosion protection, Small, 20(2024), No. 8, art. No. 2305849.
|
[22] |
C.X. Wang, B. Wang, X. Cao, et al., 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption, Composites, Part B, 205(2021), art. No. 108529.
|
[23] |
|
[24] |
|
[25] |
T.Q. Hou, B.B. Wang, M.L. Ma, et al., Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties, Composites, Part B, 180(2020), art. No. 107577.
|
[26] |
X. Zhong, M.K. He, C.Y. Zhang, Y.Q. Guo, J.W. Hu, and J.W. Gu, Heterostructured BN@Co–C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band, Adv. Funct. Mater., 22024). DOI: https://doi.org/10.1002/adfm.202313544
|
[27] |
T.P. Ying, J. Zhang, X.G. Liu, J.H. Yu, J.Y. Yu, and X.F. Zhang, Corncob-derived hierarchical porous carbon/Ni composites for microwave absorbing application, J. Alloys Compd., 849(2020), art. No. 156662.
|
[28] |
M.K. He, J.W. Hu, H. Yan, et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity, Adv. Funct. Mater., (2024). DOI: https://doi.org/10.1002/adfm.202316691
|
[29] |
|
[30] |
|
[31] |
|
[32] |
J.X. Zhou, D. Lan, F. Zhang, et al., Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band, Small, 19(2023), No. 52, art. No. 2304932.
|
[33] |
|
[34] |
|
[35] |
L.H. Zhuo, Y.L. Cai, D. Shen, et al., Anti-oxidation polyimide-based hybrid foams assembled with bilayer coatings for efficient electromagnetic interference shielding, Chem. Eng. J., 451(2023), art. No. 138808.
|
[36] |
J.W. Ren, G.Q. Jiang, Z. Wang, et al., Highly thermoconductive and mechanically robust boron nitride/aramid composite dielectric films from non-covalent interfacial engineering, Adv. Compos. Hybrid Mater., 7(2023), No. 1, art. No. 5.
|
[37] |
T.S. Liu, N. Liu, L.X. Gai, et al., Hierarchical carbonaceous composites with dispersed Co species prepared using the inherent nanostructural platform of biomass for enhanced microwave absorption, Microporous Mesoporous Mater., 302(2020), art. No. 110210.
|
[38] |
S.J. Zhang, B. Cheng, Z.G. Gao, et al., Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: an overview of recent advances and prospects, J. Alloys Compd., 893(2022), art. No. 162343.
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
H. Zhao, Y. Cheng, W. Liu, et al., Biomass-derived porous carbon-based nanostructures for microwave absorption, Nano-Micro Lett., 11(2019), No. 1, art. No. 24.
|
[44] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, and R.C. Che, Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption, Adv. Funct. Mater., 31(2021), No. 27, art. No. 2102812.
|
[45] |
P.B. Liu, G.Z. Zhang, H.X. Xu, et al., Synergistic dielectric–magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance, Adv. Funct. Mater., 33(2023), No. 13, art. No. 2211298.
|
[46] |
J.M. Yang, H. Wang, Y.L. Zhang, H.X. Zhang, and J.W. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding, Nano-Micro Lett., 16(2023), No. 1, art. No. 31.
|
[47] |
X.D. Zhou, H.B. Zhang, M.Y. Yuan, et al., Dispersing magnetic nanoparticles into staggered, porous nano-frameworks: weaving and visualizing nanoscale magnetic flux lines for enhanced electromagnetic absorption, Adv. Funct. Mater., (2024). DOI: https://doi.org/10.1002/adfm.202314541
|
[48] |
|
[49] |
|
[50] |
S. Chen, Y.B. Meng, X.L. Wang, et al., Hollow tubular MnO2/MXene (Ti3C2, Nb2C, and V2C) composites as high-efficiency absorbers with synergistic anticorrosion performance, Carbon, 218(2024), art. No. 118698.
|
[51] |
|
[52] |
Y. Zhang, Z.H. Yang, M. Li, et al., Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption, Chem. Eng. J., 382(2020), art. No. 123039.
|
[53] |
|
[54] |
H.L. Lv, Y.X. Yao, S.C. Li, et al., Staggered circular nanoporous graphene converts electromagnetic waves into electricity, Nat. Commun., 14(2023), No. 1, art. No. 1982.
|
[55] |
Z.H. Zhao, L.M. Zhang, and H.J. Wu, Hydro/organo/ionogels: “controllable” electromagnetic wave absorbers, Adv. Mater., 34(2022), No. 43, art. No. 2205376.
|
[56] |
H.L. Lv, Z.H. Yang, B. Liu, et al., A flexible electromagnetic wave-electricity harvester, Nat. Commun., 12(2021), No. 1, art. No. 834.
|
[57] |
S.J. Zhang, Z.G. Gao, Z.B. Sun, et al., Solid solution strategy for bimetallic metal-polyphenolic networks deriving electromagnetic wave absorbers with regulated heterointerfaces, Appl. Surf. Sci., 611(2023), art. No. 155707.
|
[58] |
H.L. Lv, Y.X. Yao, M.Y. Yuan, et al., Functional nanoporous graphene superlattice, Nat. Commun., 15(2024), No. 1, art. No. 1295.
|
[59] |
X.K. Fang, K.X. Pang, G. Zhao, et al., Improving the liquid phase exfoliation efficiency of graphene based on the enhanced intermolecular and interfacial interactions, Chem. Eng. J., 480(2024), art. No. 148263.
|
[60] |
S.J. Zhang, D. Lan, J.J. Zheng, et al., Perspectives of nitrogen-doped carbons for electromagnetic wave absorption, Carbon, 221(2024), art. No. 118925.
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
Y.L. Zhang, K.P. Ruan, K. Zhou, and J.W. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding, Adv. Mater., 35(2023), No. 16, art. No. 2211642.
|
[66] |
S. Zhang, X.H. Liu, C.Y. Jia, et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics, Nano-Micro Lett., 15(2023), No. 1, art. No. 204.
|
[67] |
X. Li, L.M. Yu, W.K. Zhao, et al., Prism-shaped hollow carbon decorated with polyaniline for microwave absorption, Chem. Eng. J., 379(2020), art. No. 122393.
|
[68] |
|
[69] |
|
[70] |
|
[71] |
S. Zhang, D. Lan, J. Zheng, et al., Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption, Int. J. Miner. Metall. Mater., (2024). DOI: https://doi.org/10.1007/s12613-024-2875-y
|
[72] |
|
[73] |
J.X. Xiao, B.B. Zhan, M.K. He, et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption, Adv. Funct. Mater., (2024). DOI: https://doi.org/10.1022/adfm.202316722
|
[74] |
|
[75] |
Y. Han, M.J. Han, T.B. Zhao, et al., Design of morphology-controlled cobalt-based spinel oxides for efficient X-band microwave absorption, Mater. Res. Bull., 172(2024), art. No. 112670.
|
[76] |
|
[77] |
|
[78] |
F. Zhang, Z.R. Jia, Z. Wang, et al., Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber, Mater. Today Phys., 20(2021), art. No. 100475.
|
[79] |
D. Lan, H.F. Li, M. Wang, et al., Recent advances in construction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials, Mater. Res. Bull., 171(2024), art. No. 112630.
|
[80] |
W. Wang, K. Nan, H. Zheng, Q.W. Li, and Y. Wang, Ion-exchange reaction construction of carbon nanotube-modified CoNi@MoO2/C composite for ultra-intense and broad electromagnetic wave absorption, Carbon, 210(2023), art. No. 118074.
|
[81] |
F. Zhang, W. Cui, B.B. Wang, et al., Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities, Composites, Part B, 204(2021), art. No. 108491.
|
[82] |
Z.R. Jia, D. Lan, M. Chang, Y. Han, and G.L. Wu, Heterogeneous interfaces and 3D foam structures synergize to build superior electromagnetic wave absorbers, Mater. Today Phys., 37(2023), art. No. 101215.
|
[83] |
|
[84] |
S.Q. Yang, L. Tang, H.J. Wei, et al., In-situ construction of volcanic rock-like structures in Yb2O3 modified reduced graphene oxide and their boosted electromagnetic wave absorbing properties, Carbon, 215(2023), art. No. 118445.
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
Z.H. Wu, C. Yao, Z.Z. Meng, et al., Biomass-derived crocodile skin-like porous carbon for high-performance microwave absorption, Adv. Sustainable Syst., 6(2022), No. 6, art. No. 2100454.
|
[94] |
Z.N. Xiang, Y.Q. Wang, X.M. Yin, and Q.H. He, Microwave absorption performance of porous heterogeneous SiC/SiO2 microspheres, Chem. Eng. J., 451(2023), art. No. 138742.
|
[95] |
|
/
〈 | 〉 |