Enhancing corrosion resistance of plasma electrolytic oxidation coatings on AM50 Mg alloy by inhibitor containing Ba(NO3)2 solutions
Jirui Ma, Xiaopeng Lu, Santosh Prasad Sah, Qianqian Chen, You Zhang, Fuhui Wang
Enhancing corrosion resistance of plasma electrolytic oxidation coatings on AM50 Mg alloy by inhibitor containing Ba(NO3)2 solutions
To enhance the long-term corrosion resistance of the plasma electrolytic oxidation (PEO) coating on the magnesium (Mg) alloy, an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating. In this study, the corrosion performance of PEO-coated AM50 Mg was significantly improved by loading sodium lauryl sulfonate (SDS) and sodium dodecyl benzene sulfonate into Ba(NO3)2 post-sealing solutions. Scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectrometer, and ultraviolet–visible analyses showed that the inhibitors enhanced the incorporation of BaO2 into PEO coatings. Electrochemical impedance showed that post-sealing in Ba(NO3)2/SDS treatment enhanced corrosion resistance by three orders of magnitude. The total impedance value remained at 926 Ω·cm2 after immersing in a 0.5wt% NaCl solution for 768 h. A salt spray test for 40 days did not show any obvious region of corrosion, proving excellent post-sealing by Ba(NO3)2/SDS treatment. The corrosion resistance of the coating was enhanced through the synergistic effect of BaO2 pore sealing and SDS adsorption.
Mg / plasma electrolytic oxidation / posttreatment / corrosion resistance
[[1]] |
|
[[2]] |
D.D. Zhang, F. Peng, and X.Y. Liu, Protection of magnesium alloys: from physical barrier coating to smart self-healing coating, J. Alloys Compd., 853(2021), art. No. 157010.
|
[[3]] |
J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnesium Alloys, (2020), No. 1, p. 1.
|
[[4]] |
|
[[5]] |
J.H. Liu, Z.H. Yang, D. Li, M. Li, and F.P. Bai, Resistance coefficient for large-scale roughness with seepage through porous bed, J. Hydrol., 590(2020), art. No. 125498.
|
[[6]] |
Y.M. Zhang, N. Li, N. Ling, J.L. Zhang, and L. Wang, Enhanced long-term corrosion resistance of Mg alloys by superhydrophobic and self-healing composite coating, Chem. Eng. J., 449(2022), art. No. 137778.
|
[[7]] |
|
[[8]] |
M. Daavari, M. Atapour, M. Mohedano, R. Arrabal, E. Matykina, and A. Taherizadeh, Biotribology and biocorrosion of MWCNTs-reinforced PEO coating on AZ31B Mg alloy, Surf. Interfaces, 22(2021), art. No. 100850.
|
[[9]] |
|
[[10]] |
|
[[11]] |
|
[[12]] |
|
[[13]] |
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
|
[[19]] |
|
[[20]] |
|
[[21]] |
H.P. Han, R.Q. Wang, Y.K. Wu, et al., An investigation of plasma electrolytic oxidation coatings on crevice surface of AZ31 magnesium alloy, J. Alloys Compd., 811(2019), art. No. 152010.
|
[[22]] |
|
[[23]] |
|
[[24]] |
A. Ghanbari, A. Bordbar-Khiabani, F. Warchomicka, C. Sommitsch, B. Yarmand, and A. Zamanian, PEO/Polymer hybrid coatings on magnesium alloy to improve biodegradation and biocompatibility properties, Surf. Interfaces, 36(2023), art. No. 102495.
|
[[25]] |
N. Li, N. Ling, H.Y. Fan, L. Wang, and J.L. Zhang, Self-healing and superhydrophobic dual-function composite coating for active protection of magnesium alloys, Surf. Coat. Technol., 454(2023), art. No. 129146.
|
[[26]] |
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
Q.Q. Chen, X.P. Lu, M. Serdechnova, et al., Formation of self-healing PEO coatings on AM50 Mg by in situ incorporation of zeolite micro-container, Corros. Sci., 209(2022), art. No. 110785.
|
[[31]] |
|
[[32]] |
|
[[33]] |
L. Pezzato, R. Babbolin, P. Cerchier, et al., Sealing of PEO coated AZ91magnesium alloy using solutions containing neodymium, Corros. Sci., 173(2020), art. No. 108741.
|
[[34]] |
M. Mohedano, P. Pérez, E. Matykina, B. Pillado, G. Garcés, and R. Arrabal, PEO coating with Ce-sealing for corrosion protection of LPSO Mg–Y–Zn alloy, Surf. Coat. Technol., 383(2020), art. No. 125253.
|
[[35]] |
M.A. Abd El-Ghaffar, N.A. Abdelwahab, A.M. Fekry, M.A. Sanad, M.W. Sabaa, and S.M.A. Soliman, Polyester-epoxy resin/conducting polymer/barium sulfate hybrid composite as a smart eco-friendly anti-corrosive powder coating, Prog. Org. Coat., 144(2020), art. No. 105664.
|
[[36]] |
|
[[37]] |
|
[[38]] |
|
[[39]] |
|
[[40]] |
T.D. Pham, T.T. Tran, V.A. Le, T.T. Pham, T.H. Dao, and T.S. Le, Adsorption characteristics of molecular oxytetracycline onto alumina particles: The role of surface modification with an anionic surfactant, J. Mol. Liq., 287(2019), art. No. 110900.
|
[[41]] |
|
[[42]] |
L.Y. Xu, X.J. Fu, H.J. Su, H.L. Sun, R.C. Li, and Y. Wan, Corrosion and tribocorrosion protection of AZ31B Mg alloy by a hydrothermally treated PEO/chitosan composite coating, Prog. Org. Coat., 170(2022), art. No. 107002.
|
[[43]] |
B. Vaghefinazari, S.V. Lamaka, C. Blawert, et al., Exploring the corrosion inhibition mechanism of 8-hydroxyquinoline for a PEO-coated magnesium alloy, Corros. Sci., 203(2022), art. No. 110344.
|
[[44]] |
Y. Chen, X.P. Lu, S.V. Lamaka, et al., Active protection of Mg alloy by composite PEO coating loaded with corrosion inhibitors, Appl. Surf. Sci., 504(2020), art. No. 144462.
|
[[45]] |
|
[[46]] |
|
[[47]] |
|
[[48]] |
|
[[49]] |
C. Liu, X.P. Lu, Y. Li, Q.Q. Chen, T. Zhang, and F.H. Wang, Influence of post-treatment process on corrosion and wear properties of PEO coatings on AM50 Mg alloy, J. Alloys Compd., 870(2021), art. No. 159462.
|
[[50]] |
T. Bayram, S. Bucak, and D. Ozturk, BR13 dye removal using sodium dodecyl sulfate modified montmorillonite: Equilibrium, thermodynamic, kinetic and reusability studies, Chem. Eng. Process. Process. Intensif., 158(2020), art. No. 108186.
|
[[51]] |
|
[[52]] |
|
[[53]] |
H.Y. Wang, Y.L. Song, X.G. Chen, G.D. Tong, and L.Y. Zhang, Microstructure and corrosion behavior of PEO-LDHs-SDS superhydrophobic composite film on magnesium alloy, Corros. Sci., 208(2022), art. No. 110699.
|
[[54]] |
|
/
〈 | 〉 |