Investigation and optimization of high-valent Ta-doped SrFeO3−δ as air electrode for intermediate-temperature solid oxide fuel cells
Shanshan Jiang, Hao Qiu, Shaohua Xu, Xiaomin Xu, Jingjing Jiang, Beibei Xiao, Paulo Sérgio Barros Julião, Chao Su, Daifen Chen, Wei Zhou
Investigation and optimization of high-valent Ta-doped SrFeO3−δ as air electrode for intermediate-temperature solid oxide fuel cells
To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs), 10mol% Ta5+ doped in the B site of strontium ferrite perovskite oxide (SrTa0.1Fe0.9O3−δ, STF) is investigated and optimized. The effects of Ta5+ doping on structure, transition metal reduction, oxygen nonstoichiometry, thermal expansion, and electrical performance are evaluated systematically. Via 10mol% Ta5+ doping, the thermal expansion coefficient (TEC) decreased from 34.1 × 10−6 (SrFeO3−δ) to 14.6 × 10−6 K−1 (STF), which is near the TEC of electrolyte (13.3 × 10−6 K−1 for Sm0.2Ce0.8O1.9, SDC), indicates excellent thermomechanical compatibility. At 550–750°C, STF shows superior oxygen vacancy concentrations (0.262 to 0.331), which is critical in the oxygen-reduction reaction (ORR). Oxygen temperature-programmed desorption (O2-TPD) indicated the thermal reduction onset temperature of iron ion is around 420°C, which matched well with the inflection points on the thermos-gravimetric analysis and electrical conductivity curves. At 600°C, the STF electrode shows area-specific resistance (ASR) of 0.152 Ω·cm2 and peak power density (PPD) of 749 mW·cm−2. ORR activity of STF was further improved by introducing 30wt% Sm0.2Ce0.8O1.9 (SDC) powder, STF + SDC composite cathode achieving outstanding ASR value of 0.115 Ω·cm2 at 600°C, even comparable with benchmark cobalt-containing cathode, Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF). Distribution of relaxation time (DRT) analysis revealed that the oxygen surface exchange and bulk diffusion were improved by forming a composite cathode. At 650°C, STF + SDC composite cathode achieving an outstanding PPD of 1117 mW·cm−2. The excellent results suggest that STF and STF + SDC are promising air electrodes for IT-SOFCs.
strontium ferrite-based perovskite / Ta doping / composite cathode / intermediate-temperature solid oxide fuel cells
[[1]] |
|
[[2]] |
|
[[3]] |
M. Wang, C. Su, Z.H. Zhu, H. Wang, and L. Ge, Composite cathodes for protonic ceramic fuel cells: Rationales and materials, Composites Part B, 238(2022), art. No. 109881.
|
[[4]] |
|
[[5]] |
|
[[6]] |
|
[[7]] |
|
[[8]] |
|
[[9]] |
J. Yu, Z. Li, T. Liu, et al., Morphology control and electronic tailoring of CoxAy (A = P, S, Se) electrocatalysts for water splitting, Chem. Eng. J., 460(2023), art. No. 141674.
|
[[10]] |
J.X. Pan, Y.J. Ye, M.Z. Zhou, et al., Improving the activity and stability of Ni-based electrodes for solid oxide cells through surface engineering: Recent progress and future perspectives, Mater. Rep. Energy, 1(2021), No. 2, art. No. 100025.
|
[[11]] |
|
[[12]] |
|
[[13]] |
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
|
[[19]] |
Y.F. Song, Y.B. Chen, M.G. Xu, et al., A cobalt-free multiphase nanocomposite as near-ideal cathode of intermediate-temperature solid oxide fuel cells developed by smart self-assembly, Adv. Mater., 32(2020), No. 8, art. No. e1906979.
|
[[20]] |
H.G. Shi, C. Su, X.M. Xu, et al., Building Ruddlesden-Popper and single perovskite nanocomposites: A new strategy to develop high-performance cathode for protonic ceramic fuel cells, Small, 17(2021), No. 35, art. No. e2101872.
|
[[21]] |
|
[[22]] |
D.M. Huan, L. Zhang, K. Zhu, et al., Oxygen vacancy-engineered cobalt-free Ruddlesden-Popper cathode with excellent CO2 tolerance for solid oxide fuel cells, J. Power Sources, 497(2021), art. No. 229872.
|
[[23]] |
|
/
〈 | 〉 |