Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys
Zongli Yi, Jiguo Shan, Yue Zhao, Zhenlin Zhang, Aiping Wu
Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines, aeronautics, and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures. Fusion welding serves as an effective means for joining and repairing these alloys; however, fusion welding-induced liquation cracking has been a challenging issue. This paper comprehensively reviewed recent liquation cracking, discussing the formation mechanisms, cracking criteria, and remedies. In recent investigations, regulating material composition, changing the preweld heat treatment of the base metal, optimizing the welding process parameters, and applying auxiliary control methods are effective strategies for mitigating cracks. To promote the application of nickel-based superalloys, further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary.
nickel-based superalloy / fusion welding liquation cracking / cracking mechanism / cracking suppression
[1] |
|
[2] |
G. Gudivada and A.K. Pandey, Recent developments in nickel-based superalloys for gas turbine applications: Review, J. Alloys Compd., 963(2023), art. No. 171128.
|
[3] |
|
[4] |
S.K. Selvaraj, G. Sundaramali, S.J. Dev, et al., Recent advancements in the field of Ni-based superalloys, Adv. Mater. Sci. Eng., 2021(2021), art. No. 9723450.
|
[5] |
T.Y. Wang, Y.M. Xuan, and X.S. Han, Investigation on hybrid thermal features of aero- engines from combustor to turbine, Int. J. Heat Mass Transf., 200(2023), art. No. 123559.
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
A. Behera, A.K. Sahoo, and S.S. Mahapatra, Application of Ni-based superalloy in aero turbine blade: A review, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., 2023. https://doi.org/10.1177/09544089231219104
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
S.S. Sashank, S. Rajakumar, R. Karthikeyan, and D.S. Nagaraju, Weldability, mechanical properties and microstructure of nickel based super alloys: A review, E3S Web Conf., 184(2020), art. No. 01040.
|
[19] |
|
[20] |
Y. Li, H.N. Kou, M.Y. Li, et al., Research progress on hot cracking in precipitation-strengthened nickel-based superalloys fabricated by laser additive manufacturing, Surf. Technol., 2023. https://link.cnki.net/urlid/50.1083.TG.20230927.1658.012
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
Q.S. Wei, Y. Xie, Q. Teng, M.Y. Shen, S.S. Sun, and C. Cai, Crack types, mechanisms, and suppression methods during high-energy beam additive manufacturing of nickel-based superalloys: A review, Chin. J. Mech. Eng. Addit. Manuf. Front., 1(2022), No. 4, art. No. 100055.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
K.C. Chen, T.C. Chen, R.K. Shiue, and L.W. Tsay, Liquation cracking in the heat-affected zone of IN738 superalloy weld, Metals, 8(2018), No. 6, art. No. 387.
|
[39] |
|
[40] |
|
[41] |
M. Taheri, A. Halvaee, and S.F. Kashani-Bozorg, Effect of Nd:YAG pulsed-laser welding parameters on microstructure and mechanical properties of GTD-111 superalloy joint, Mater. Res. Express, 6(2019), No. 7, art. No. 076549.
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
Ł. Rakoczy, M. Grudzień-Rakoczy, B. Rutkowski, et al., The role of the strengthening phases on the HAZ liquation cracking in a cast Ni-based superalloy used in industrial gas turbines, Arch. Civ. Mech. Eng., 23(2023), No. 2, art. No. 119.
|
[48] |
|
[49] |
D.X. Kou, Z.Y. Chen, Z.Z. Chen, Y.Q. Li, Y.L. Ma, and Y.M. Li, Evolution of microstructure in nickel-based C-HRA-2 alloy during welding thermal simulation, Mater. Res. Express, 10(2023), No. 5, art. No. 056505.
|
[50] |
|
[51] |
Z.L. Zhang, Y. Zhao, J.G. Shan, et al., Evolution behavior of liquid film in the heat-affected zone of laser cladding non-weldable nickel-based superalloy, J. Alloys Compd., 863(2021), art. No. 158463.
|
[52] |
Y.H. Cheng, J.T. Chen, R.K. Shiue, and L.W. Tsay, The evolution of cast microstructures on the HAZ liquation cracking of Mar-M004 weld, Metals, 8(2018), No. 1, art. No. 35.
|
[53] |
|
[54] |
|
[55] |
B. Schulz, T. Leitner, and S. Primig, In-situ observation of the incipient melting of borides and its effect on the hot-workability of Ni-based superalloys, J. Alloys Compd., 956(2023), art. No. 170324.
|
[56] |
Z.L. Zhang, Y. Zhao, J.G. Shan, et al., The role of shot peening on liquation cracking in laser cladding of K447A nickel superalloy powders over its non-weldable cast structure, Mater. Sci. Eng. A, 823(2021), art. No. 141678.
|
[57] |
J.L. Cann, A. De Luca, D.C. Dunand, et al., Suttainability through alloy design: Challenges and opportunities, Prog. Mater. Sci., 117(2021), art. No. 100722.
|
[58] |
S. Kou, Predicting susceptibility to solidification cracking and liquation cracking by CALPHAD, Metals, 11(2021), No. 9, art. No. 1442.
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
M. Bayat, W. Dong, J. Thorborg, A.C. To, and J.H. Hattel, A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies, Addit. Manuf., 47(2021), art. No. 102278.
|
[69] |
|
[70] |
|
[71] |
H. Ruan, S. Rezaei, Y. Yang, D. Gross, and B.X. Xu, A thermo-mechanical phase-field fracture model: Application to hot cracking simulations in additive manufacturing, J. Mech. Phys. Solids, 172(2023), art. No. 105169.
|
[72] |
|
[73] |
|
[74] |
A. du Plessis, I. Yadroitsava, and I. Yadroitsev, Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights, Mater. Des., 187(2020), art. No. 108385.
|
[75] |
C. Ioannidou, H.H. König, N. Semjatov, et al., In-situ synchrotron X-ray analysis of metal Additive Manufacturing: Current state, opportunities and challenges, Mater. Des., 219(2022), art. No. 110790.
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
Z.J. Sun, Y. Ma, D. Ponge, et al., Thermodynamics-guided alloy and process design for additive manufacturing, Nat. Commun, 13(2022), No. 1, art. No. 4361.
|
[85] |
|
[86] |
S. Griffiths, H.G. Tabasi, T. Ivas, et al., Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy, Addit. Manuf., 36(2020), art. No. 101443.
|
[87] |
W.Z. Zhou, Y.S. Tian, Q.B. Tan, et al., Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion, Addit. Manuf., 58(2022), art. No. 103016.
|
[88] |
H. Kazempour-Liasi, M. Tajally, and H. Abdollah-Pour, Effects of pre- and post-weld heat treatment cycles on the liquation and strain-age cracking of IN939 superalloy, Eng. Res. Express, 1(2019), No. 2, art. No. 025026.
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
E.J. Chun, Y.S. Jeong, K.M. Kim, H. Lee, and S.M. Seo, Suppression of liquation cracking susceptibility via pre-weld heat treatment for manufacturing of CM247LC superalloy turbine blade welds, J. Adv. Join. Process., 4(2021), art. No. 100069.
|
[96] |
B.G. Zhang, F. Peng, H.Q. Wang, and K. Han, Research progress on liquation cracking of precipitation hardened nickel-based superallloys in fusion welding, Weld. Join, (2019), No. 9, p. 26.
|
[97] |
|
[98] |
|
[99] |
N.N. Lu, Z.L. Lei, K. Hu, et al., Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal super-alloy during directed energy deposition, Addit. Manuf., 34(2020), art. No. 101228.
|
[100] |
J.W. Wang, H.M. Wang, H.W. Gao, et al., Origin of hot cracking formation and suppression method in laser additive manufactured nickel-based superalloys, Mater. Lett., 352(2023), art. No. 135200.
|
[101] |
|
[102] |
|
[103] |
R. Jeyaraam, V.S. Sarma, and S. Vedantam, Phase field modelling of annealing twin formation, evolution and interactions during grain growth, Comput. Mater. Sci., 182(2020), art. No. 109787.
|
[104] |
K. Yang, T. An, J.L. Qu, et al., Effects of solution cooling rate on the grain boundary and mechanical properties of GH4710 alloy, Mater. Sci. Eng. A, 832(2022), art. No. 142459.
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
|
[114] |
|
[115] |
|
[116] |
P.L. Zhang, Z.Y. Jia, Z.S. Yu, et al., A review on the effect of laser pulse shaping on the microstructure and hot cracking behavior in the welding of alloys, Opt. Laser Technol., 140(2021), art. No. 107094.
|
[117] |
|
[118] |
P. Alvarez, L. Vázquez, N. Ruiz, et al., Comparison of hot cracking susceptibility of TIG and laser beam welded alloy 718 by varestraint testing, Metals, 9(2019), No. 9, art. No. 985.
|
[119] |
|
[120] |
Y.Z. Bai, Q.H. Lu, X.H. Ren, H. Yan, and P.L. Zhang, Study of Inconel 718 welded by bead-on-plate laser welding under high-frequency micro-vibration condition, Metals, 9(2019), No. 12, art. No. 1335.
|
[121] |
|
[122] |
|
[123] |
|
[124] |
|
[125] |
|
[126] |
|
[127] |
|
[128] |
|
[129] |
|
[130] |
M. Vilanova, F. Garciandia, S. Sainz, D. Jorge-Badiola, T. Guraya, and M.S. Sebastian, The limit of hot isostatic pressing for healing cracks present in an additively manufactured nickel superalloy, J. Mater. Process. Technol., 300(2022), art. No. 117398.
|
/
〈 | 〉 |