Breaking the Fe3O4-wrapped copper microstructure to enhance copper–slag separation

Xiaopeng Chi, Haoyu Liu, Jun Xia, Hang Chen, Xiangtao Yu, Wei Weng, Shuiping Zhong

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (10) : 2312-2325. DOI: 10.1007/s12613-024-2861-4
Research Article

Breaking the Fe3O4-wrapped copper microstructure to enhance copper–slag separation

Author information +
History +

Abstract

The precipitation of Fe3O4 particles and the accompanied formation of Fe3O4-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of copper concentrates. Herein, the commercial powdery pyrite or anthracite is replaced with pyrite–anthracite pellets as the reductants to remove a large amount of Fe3O4 particles in the molten slag, resulting in a deep fracture in the Fe3O4-wrapped copper microstructure and the full exposure of the copper matte cores. When 1wt% composite pellet is used as the reductant, the copper matte droplets are enlarged greatly from 25 µm to a size observable by the naked eye, with the copper content being enriched remarkably from 1.2wt% to 4.5wt%. Density functional theory calculation results imply that the formation of the Fe3O4-wrapped copper structure is due to the preferential adhesion of Cu2S on the Fe3O4 particles. X-ray photoelectron spectroscopy, Fourier transform infrared spectrometer (FTIR), and Raman spectroscopy results all reveal that the high-efficiency conversion of Fe3O4 to FeO can decrease the volume fraction of the solid phase and promote the depolymerization of silicate network structure. As a consequence, the settling of copper matte droplets is enhanced due to the lowered slag viscosity, contributing to the high efficiency of copper–slag separation for copper recovery. The results provide new insights into the enhanced in-situ enrichment of copper from molten slag.

Keywords

pyrometallurgical smelting process / slag cleaning / reductants / copper matte

Cite this article

Download citation ▾
Xiaopeng Chi, Haoyu Liu, Jun Xia, Hang Chen, Xiangtao Yu, Wei Weng, Shuiping Zhong. Breaking the Fe3O4-wrapped copper microstructure to enhance copper–slag separation. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(10): 2312‒2325 https://doi.org/10.1007/s12613-024-2861-4

References

[1]
Nie SQ, Xin Y, Wang QY, et al.. Three-dimensional structural Cu6Sn5/carbon nanotubes alloy thin-film electrodes fabricated by in situ electrodeposition from the leaching solution of waste-printed circuit boards. Int. J. Miner. Metall. Mater., 2023, 30(6): 1171,
CrossRef Google scholar
[2]
Li X, Ma BZ, Wang CY, Hu D, YW, Chen YQ. Recycling and recovery of spent copper–indium–gallium–diselenide (CIGS) solar cells: A review. Int. J. Miner. Metall. Mater., 2023, 30(6): 989,
CrossRef Google scholar
[3]
Wang D, Ma Q, Tian KH, Duan CQ, Wang ZY, Liu YG. Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1666,
CrossRef Google scholar
[4]
M. Hao, L.B. Tang, P. Wang, et al., Mapping China’s copper cycle from 1950–2015: Role of international trade and secondary resources, Resour. Conserv. Recycl., 188(2023), art. No. 106700.
[5]
S. Liu, W. Liu, Q.Y. Tan, J.H. Li, W.Q. Qin, and C.R. Yang, The impact of China’s import ban on global copper scrap flow network and the domestic copper sustainability, Resour. Conserv. Recycl., 169(2021), art. No. 105525.
[6]
Sridhar R, Toguri JM, Simeonov S. Copper losses and thermodynamic considerations in copper smelting. Metall. Mater. Trans. B, 1997, 28(2): 191,
CrossRef Google scholar
[7]
Wang QM, Wang SS, Tian M, Tang DX, Tian QH, Guo XY. Relationship between copper content of slag and matte in the SKS copper smelting process. Int. J. Miner. Metall. Mater., 2019, 26(3): 301,
CrossRef Google scholar
[8]
Zivkovic Z, Djordjevic P, Mitevska N. Contribution to the examination of the mechanisms of copper loss with the slag in the process of sulfide concentrates smelting. Min. Metall. Explor., 2020, 37(1): 267
[9]
G.R. Qu, Y.G. Wei, B. Li, H. Wang, Y.D. Yang, and A. McLean, Distribution of copper and iron components with hydrogen reduction of copper slag, J. Alloys Compd., 824(2020), art. No. 153910.
[10]
Zhang HP, Li B, McLean A, Wei YG, Wang H, Ye ZL. Investigation of reducing copper slag using waste motor oil to recover matte. Metall. Mater. Trans. B, 2023, 54(1): 178,
CrossRef Google scholar
[11]
S.W. Zhou, Y.G. Wei, S.Y. Zhang, et al., Reduction of copper smelting slag using waste cooking oil, J. Cleaner. Prod., 236(2019), art. No. 117668.
[12]
Zhou SW, Wei YG, Shi Y, Li B, Wang H. Characterization and recovery of copper from converter copper slag via smelting separation. Metall. Mater. Trans. B, 2018, 49(5): 2458,
CrossRef Google scholar
[13]
Ye ZL, Dai GP, Zhang B, et al.. Apparent viscosity evolution of copper converter slag during a reduction process. Min. Metall. Explor., 2022, 39(6): 2529
[14]
Yuan F, Zhao Z, Zhang YL, Wu T. Effect of Al2O3 content on the viscosity and structure of CaO–SiO2–Cr2O3–Al2O3 slags. Int. J. Miner. Metall. Mater., 2022, 29(8): 1522,
CrossRef Google scholar
[15]
De Wilde E, Bellemans I, Campforts M, et al.. Study of the effect of spinel composition on metallic copper losses in slags. J. Sustainable Metall., 2017, 3(2): 416,
CrossRef Google scholar
[16]
Isaksson J, Andersson A, Vikström T, Lennartsson A, Samuelsson C. Improved settling mechanisms of an industrial copper smelting slag by CaO modification. J. Sustainable Metall., 2023, 9(3): 1378,
CrossRef Google scholar
[17]
Wang HY, Zhu R, Dong K, Zhang SQ, Wang Y, Lan XY. Effect of injection of different gases on removal of arsenic in form of dust from molten copper smelting slag prior to recovery process. Trans. Nonferrous Met. Soc. China, 2023, 33(4): 1258,
CrossRef Google scholar
[18]
Gao X, Chen Z, Shi JJ, Taskinen P, Jokilaakso A. Effect of cooling rate and slag modification on the copper matte in smelting slag. Min. Metall. Explor., 2020, 37(5): 1593
[19]
Sarrafi A, Rahmati B, Hassani HR, Shirazi HHA. Recovery of copper from reverberatory furnace slag by flotation. Miner. Eng., 2004, 17(3): 457,
CrossRef Google scholar
[20]
Inge B, Evelien DW, Nele M, Kim V. Metal losses in pyrometallurgical operations: A review. Adv. Colloid Interface Sci., 2018, 255: 47,
CrossRef Google scholar
[21]
Guo ZQ, Zhu DQ, Pan J, Zhang F, Yang CC. Industrial tests to modify molten copper slag for improvement of copper recovery. JOM, 2018, 70(4): 533,
CrossRef Google scholar
[22]
Zhang HP, Li B, Wei YG, Wang H. The settling behavior of matte particles in copper slag and the new technology of copper slag cleaning. J. Mater. Res. Technol., 2021, 15: 6216,
CrossRef Google scholar
[23]
H.H. Zhou, G.J. Liu, L.Q. Zhang, and C.C. Zhou, Mineralogical and morphological factors affecting the separation of copper and arsenic in flash copper smelting slag flotation beneficiation process, J. Hazard. Mater., 401(2021), art. No. 123293.
[24]
Guo XS, Li ZY, Han JC, Yang D, Sun TC. Petroleum coke as reductant in co-reduction of low-grade laterite ore and red mud to prepare ferronickel: Reductant and reduction effects. Int. J. Miner. Metall. Mater., 2022, 29(3): 455,
CrossRef Google scholar
[25]
Zhang HP, Li B, Wei YG, Wang H, Yang YD, McLean A. Reduction of magnetite from copper smelting slag in the presence of a graphite rod. Metall. Mater. Trans. B, 2020, 51(6): 2663,
CrossRef Google scholar
[26]
H.Q. Zhang, G.H. Chen, X. Cai, et al., The leaching behavior of copper and iron recovery from reduction roasting pyrite cinder, J. Hazard. Mater., 420(2021), art. No. 126561.
[27]
Zhang BJ, Zhang TA, Dou ZH, Zhang DL. Effect of vortex stirring on the dilution of copper slag. J. Wuhan Univ. Technol. Mater Sci Ed., 2022, 37(4): 699,
CrossRef Google scholar
[28]
Dosmukhamedov N, Egizekov M, Zholdasbay E, Kaplan V. Metal recovery from converter slags using a sulfiding agent. JOM, 2018, 70(10): 2400,
CrossRef Google scholar
[29]
Zhou SW, Wei YG, Li B, Wang H. Effect of iron phase evolution on copper separation from slag via coal-based reduction. Metall. Mater. Trans. B, 2018, 49(6): 3086,
CrossRef Google scholar
[30]
Zhang BJ, Zhang TA, Niu LP, Liu NS, Dou ZH, Li ZQ. Moderate dilution of copper slag by natural gas. JOM, 2018, 70(1): 47,
CrossRef Google scholar
[31]
Zhang J, Qi YH, Yan DL, Xu HC. A new technology for copper slag reduction to get molten iron and copper matte. J. Iron Steel Res. Int., 2015, 22(5): 396,
CrossRef Google scholar
[32]
Plotnikov IP, Komkov AA, Bystrov SV. Behavior of copper and sulfur during high-temperature sulfurization of copper-smelting slags with elemental sulfur. Metallurgist, 2023, 67(3): 476,
CrossRef Google scholar
[33]
Yin F, Xing P, Li Q, Wang CY, Wang Z. Magnetic separation-sulphuric acid leaching of Cu–Co–Fe matte obtained from copper converter slag for recovering Cu and Co. Hydrometallurgy, 2014, 149: 189,
CrossRef Google scholar
[34]
Hughes S. Applying ausmelt technology to recover Cu, Ni, and Co from slags. JOM, 2000, 52(8): 30,
CrossRef Google scholar
[35]
Isaksson J, Andersson A, Lennartsson A, Samuelsson C. Interactions of crucible materials with an FeOx–SiO2–Al2O3 melt and their influence on viscosity measurements. Metall. Mater. Trans. B, 2023, 54(6): 3526,
CrossRef Google scholar
[36]
H. Saigo, D.B. Kc, and N. Saito, Einstein–Roscoe regression for the slag viscosity prediction problem in steelmaking, Sci. Rep., 12(2022), No. 1, art. No. 6541.
[37]
Kim TS, Park JH. Structure–viscosity relationship of low-silica calcium aluminosilicate melts. ISIJ Int., 2014, 54(9): 2031,
CrossRef Google scholar
[38]
Y. Shi, Y.G. Wei, S.W. Zhou, B. Li, Y.D. Yang, and H. Wang, Effect of B2O3 content on the viscosity of copper slag, J. Alloys Compd., 822(2020), art. No. 153478.
[39]
Rusen A, Geveci A, Ali Topkaya Y, Derin B. Effects of some additives on copper losses to matte smelting slag. JOM, 2016, 68(9): 2323,
CrossRef Google scholar
[40]
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev., 1964, 136(3B): 864,
CrossRef Google scholar
[41]
Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133,
CrossRef Google scholar
[42]
Blöchl PE. Projector augmented-wave method. Phys. Rev. B: Condens. Matter, 1994, 50(24): 17953,
CrossRef Google scholar
[43]
Zhong SP, Zhu HL, Yang L, Chi XP, Tan W, Weng W. Activating bulk nickel foam for the electrochemical oxidization of ethanol by anchoring MnO2@Au nanorods. J. Mater. Chem. A, 2023, 11(15): 8101,
CrossRef Google scholar
[44]
Weng W, Xiao JX, Shen YJ, Liang XX, Lv T, Xiao W. Molten salt electrochemical modulation of iron–carbon–nitrogen for lithium–sulfur batteries. Angew. Chem. Int. Ed., 2021, 60(47): 24905,
CrossRef Google scholar
[45]
J.K. Nørskov, T. Bligaard, A. Logadottir, et al., Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc., 152(2005), art. No. J23.
[46]
Nørskov JK, Rossmeisl J, Logadottir A, et al.. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B, 2004, 108(46): 17886,
CrossRef Google scholar
[47]
Zhang B, Liu J, Wang JS, et al.. Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy, 2017, 37: 74,
CrossRef Google scholar
[48]
Ke Y, Peng N, Xue K, et al.. Sulfidation behavior and mechanism of zinc silicate roasted with pyrite. Appl. Surf. Sci., 2018, 435: 1011,
CrossRef Google scholar
[49]
Wang K, Liu Y, Hao J, Dou ZH, Lv GZ, Zhang TA. A novel slag cleaning method to recover copper from molten copper converter slag. Trans. Nonferrous Met. Soc. China, 2023, 33(8): 2511,
CrossRef Google scholar
[50]
H.M. Ferreira, E.B. Lopes, J.F. Malta, et al., Preparation and densification of bulk pyrite, FeS2, J. Phys. Chem. Solids, 159(2021), art. No. 110296.
[51]
Kuosa M, Ekberg B, Tanttu L, Jauhiainen T, Häkkinen A. Performance comparison of anthracite filter media of different origin in the removal of organic traces from copper electrolyte. Int. J. Miner. Process., 2017, 163: 24,
CrossRef Google scholar
[52]
A. Rajan, M. Sharma, and N.K. Sahu, Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe3O4 nanoparticles for hyperthermia, Sci. Rep., 10(2020), No. 1, art. No. 15045.
[53]
R. Jain and S. Gulati, Influence of Fe2+ substitution on FTIR and Raman spectra of Mn ferrite nanoparticles, Vib. Spectrosc., 126(2023), art. No. 103540.
[54]
Zheng RL, JF, Song WF, et al.. Metallurgical properties of CaO–SiO2–Al2O3–4.6wt%MgO–Fe2O3 slag system pertaining to spent automotive catalyst smelting. Int. J. Miner. Metall. Mater., 2023, 30(5): 886,
CrossRef Google scholar
[55]
S.F. Ma, K.J. Li, J.L. Zhang, et al., The effects of CaO and FeO on the structure and properties of aluminosilicate system: A molecular dynamics study, J. Mol. Liq., 325(2021), art. No. 115106.
[56]
Talapaneni T, Yedla N, Pal S, Sarkar S. Experimental and theoretical studies on the viscosity–structure correlation for high alumina–silicate melts. Metall. Mater. Trans. B, 2017, 48(3): 1450,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/