Recent advances and perspectives in MXene-based cathodes for aqueous zinc-ion batteries
Aiduo Wu, Tianhao Wang, Long Zhang, Chen Chen, Qiaomin Li, Xuanhui Qu, Yongchang Liu
Recent advances and perspectives in MXene-based cathodes for aqueous zinc-ion batteries
Aqueous zinc-ion batteries (AZIBs) show great potential for applications in grid-scale energy storage, given their intrinsic safety, cost effectiveness, environmental friendliness, and impressive electrochemical performance. However, strong electrostatic interactions exist between zinc ions and host materials, and they hinder the development of advanced cathode materials for efficient, rapid, and stable Zn-ion storage. MXenes and their derivatives possess a large interlayer spacing, excellent hydrophilicity, outstanding electronic conductivity, and high redox activity. These materials are considered “rising star” cathode candidates for AZIBs. This comprehensive review discusses recent advances in MXenes as AZIB cathodes from the perspectives of crystal structure, Zn-storage mechanism, surface modification, interlayer engineering, and conductive network design to elucidate the correlations among their composition, structure, and electrochemical performance. This work also outlines the remaining challenges faced by MXenes for aqueous Zn-ion storage, such as the urgent need for improved toxic preparation methods, exploration of potential novel MXene cathodes, and suppression of layered MXene restacking upon cycling, and introduces the prospects of MXene-based cathode materials for high-performance AZIBs.
aqueous zinc-ion batteries / MXenes / terminal groups / interlayer engineering / conductive network design
[1] |
M. Song, H. Tan, D.L. Chao, and H.J. Fan, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1802564.
|
[2] |
|
[3] |
X.Q. Zeng, M. Li, D. Abd El-Hady, et al., Commercialization of lithium battery technologies for electric vehicles, Adv. Energy Mater., 9(2019), No. 27, art. No. 1900161.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
P.C. Ruan, S.Q. Liang, B.G. Lu, H.J. Fan, and J. Zhou, Design strategies for high-energy-density aqueous zinc batteries, Angew. Chem. Int. Ed., 61(2022), No. 17, art. No. e202200598.
|
[12] |
|
[13] |
|
[14] |
R. Zhao, J.J. Yang, X.M. Han, et al., Stabilizing Zn metal anodes via cation/anion regulation toward high energy density Zn-ion batteries, Adv. Energy Mater., 13(2023), No. 8, art. No. 2203542.
|
[15] |
X.S. Xie, J.J. Li, Z.Y. Xing, B.G. Lu, S.Q. Liang, and J. Zhou, Biocompatible zinc battery with programmable electro-cross-linked electrolyte, Natl. Sci. Rev., 10(2023), No. 3, art. No. nwac281.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
J.H. Huang, Z. Wang, M.Y. Hou, et al., Polyaniline-intercal-ated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery, Nat. Commun., 9(2018), No. 1, art. No. 2906.
|
[20] |
D.L. Chao, C. Ye, F.X. Xie, et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density, Adv. Mater., 32(2020), No. 25, art. No. 2001894.
|
[21] |
|
[22] |
Y. Tan, F.Q. An, Y.C. Liu, et al., Reaction kinetics in rechargeable zinc-ion batteries, J. Power Sources, 492(2021), art. No. 229655.
|
[23] |
|
[24] |
Y.X. Zhao, S.Q. Liang, X.D. Shi, et al., Synergetic effect of alkali-site substitution and oxygen vacancy boosting vanadate cathode for super-stable potassium and zinc storage, Adv. Funct. Mater., 32(2022), No. 32, art. No. 2203819.
|
[25] |
L.T. Ma, S.M. Chen, C.B. Long, et al., Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction, Adv. Energy Mater., 9(2019), No. 45, art. No. 1902446.
|
[26] |
Z.Y. Wu, F. Ye, Q. Liu, et al., Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage, Adv. Energy Mater., 12(2022), No. 23, art. No. 2200654.
|
[27] |
|
[28] |
D.B. Xiong, X.F. Li, Z.M. Bai, and S.G. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage, Small, 14(2018), No. 17, art. No. 1703419.
|
[29] |
Y.T. Liu, X.D. Zhu, and L. Pan, Hybrid architectures based on 2D MXenes and low-dimensional inorganic nanostructures: Methods, synergies, and energy-related applications, Small, 14(2018), No. 51, art. No. 1803632.
|
[30] |
S.W. Li, Y.C. Liu, X.D. Zhao, et al., Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries, Adv. Mater., 33(2021), No. 12, art No. 2007480.
|
[31] |
|
[32] |
|
[33] |
|
[34] |
C.D. Wang, S.Q. Wei, S.M. Chen, D.F. Cao, and L. Song, Delaminating vanadium carbides for zinc-ion storage: Hydrate precipitation and H+/Zn2+ co-action mechanism, Small Methods, 3(2019), No. 12, art. No. 1900495.
|
[35] |
|
[36] |
M.S. Javed, A. Mateen, S. Ali, X. Zhang, et al., The emergence of 2D MXenes based Zn-ion batteries: Recent development and prospects, Small, 18(2022), No. 26, art. No. 2201989.
|
[37] |
|
[38] |
|
[39] |
|
[40] |
X.L. Li, M. Li, Q. Yang, et al., Vertically aligned Sn4+ preinter-calated Ti2CTx MXene sphere with enhanced Zn ion transportation and superior cycle lifespan, Adv. Energy Mater., 10(2020), No. 35, art. No. 2001394.
|
[41] |
|
[42] |
|
[43] |
S.J. Luo, L.Y. Xie, F. Han, et al., Nanoscale parallel circuitry based on interpenetrating conductive assembly for flexible and high-power zinc ion battery, Adv. Funct. Mater., 29(2019), No. 28, art. No. 1901336.
|
[44] |
M.J. Shi, B. Wang, Y. Shen, et al., 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries, Chem. Eng. J., 399(2020), art. No. 125627.
|
[45] |
C.Z. Liu, W.W. Xu, C.T. Mei, M.C. Li, X.W. Xu, and Q.L. Wu, Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan, Chem. Eng. J., 405(2021), art. No. 126737.
|
[46] |
|
[47] |
|
[48] |
|
[49] |
B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2(2017), No. 2, art. No. 16098.
|
[50] |
|
[51] |
|
[52] |
|
[53] |
C. Chen, T.H. Wang, X.D. Zhao, et al., Customizing hydrophilic terminations for V2CTx MXene toward superior hybrid-ion storage in aqueous zinc batteries, Adv. Funct. Mater., 34(2024), No. 9, art. No. 2308508.
|
[54] |
|
[55] |
|
[56] |
|
[57] |
Y. Wei, P. Zhang, R.A. Soomro, Q.Z. Zhu, and B. Xu, Advances in the synthesis of 2D MXenes, Adv. Mater., 33(2021), No. 39, art. No. 2103148.
|
[58] |
C.D. Wang, S.M. Chen, and L. Song, Tuning 2D MXenes by surface controlling and interlayer engineering: Methods, properties, and synchrotron radiation characterizations, Adv. Funct. Mater., 30(2020), No. 47, art. No. 2000869.
|
[59] |
F. Malchik, N. Shpigel, M.D. Levi, et al., MXene conductive binder for improving performance of sodium-ion anodes in water-in-salt electrolyte, Nano Energy, 79(2021), art. No. 105433.
|
[60] |
|
[61] |
|
[62] |
E. Pomerantseva and Y. Gogotsi, Two-dimensional heterostructures for energy storage, Nat. Energy, 2(2017), No. 7, art. No. 17089.
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
X.L. Li, M. Li, Q. Yang, et al., In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery, Adv. Energy Mater., 10(2020), No. 36, art. No. 2001791.
|
[70] |
|
[71] |
|
[72] |
Y. Liu, Y. Jiang, Z. Hu, et al., In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries, Adv. Funct. Mater., 31(2021), No. 8, art. No. 2008033.
|
[73] |
|
[74] |
|
[75] |
Z.L. Li, Y.F. Wei, Y.Y. Liu, S. Yan, and M.Y. Wu, Dual strategies of metal preintercalation and in situ electrochemical oxidization operating on MXene for enhancement of ion/electron transfer and zinc-ion storage capacity in aqueous zinc-ion batteries, Adv. Sci., 10(2023), No. 8, art. No. e2206860.
|
[76] |
O. Mashtalir, M. Naguib, V.N. Mochalin, et al., Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun., 4(2013), art. No. 1716.
|
[77] |
|
[78] |
F.F. Liu, Y.C. Liu, X.D. Zhao, K.Y. Liu, H.Q. Yin, and L.Z. Fan, Prelithiated V2C MXene: A high-performance electrode for hybrid magnesium/lithium-ion batteries by ion cointercalation, Small, 16(2020), No. 8, art. No. 1906076.
|
[79] |
|
[80] |
|
[81] |
|
[82] |
J. Li, X.T. Yuan, C. Lin, et al., Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification, Adv. Energy Mater., 7(2017), No. 15, art. No. 1602725.
|
[83] |
P.A. Maughan, N. Tapia-Ruiz, and N. Bimbo, In-situ pillared MXene as a viable zinc-ion hybrid capacitor, Electrochim. Acta, 341(2020), art. No. 136061.
|
[84] |
|
[85] |
|
[86] |
Q. Wang, S.L. Wang, X.H. Guo, et al., MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life, Adv. Electron. Mater., 5(2019), No. 12, art. No. 1900537.
|
[87] |
X.L. Li, M. Li, W.Y. Xu, et al., V2CTx MXene sphere for aqueous ion storage, Energy Mater. Adv., 4(2023), art. No. 0066.
|
[88] |
J.J. Shi, Y.X. Hou, Z.Y. Liu, et al., The high-performance MoO3−x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering, Nano Energy, 91(2022), art. No. 106651.
|
[89] |
W.Y. Du, L. Miao, Z.Y. Song, et al., Kinetics-driven design of 3D VN/MXene composite structure for superior zinc storage and charge transfer, J. Power Sources, 536(2022), art. No. 231512.
|
/
〈 | 〉 |