Recent advances and perspectives in MXene-based cathodes for aqueous zinc-ion batteries

Aiduo Wu, Tianhao Wang, Long Zhang, Chen Chen, Qiaomin Li, Xuanhui Qu, Yongchang Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (7) : 1752-1765. DOI: 10.1007/s12613-024-2859-y
Invited Review

Recent advances and perspectives in MXene-based cathodes for aqueous zinc-ion batteries

Author information +
History +

Abstract

Aqueous zinc-ion batteries (AZIBs) show great potential for applications in grid-scale energy storage, given their intrinsic safety, cost effectiveness, environmental friendliness, and impressive electrochemical performance. However, strong electrostatic interactions exist between zinc ions and host materials, and they hinder the development of advanced cathode materials for efficient, rapid, and stable Zn-ion storage. MXenes and their derivatives possess a large interlayer spacing, excellent hydrophilicity, outstanding electronic conductivity, and high redox activity. These materials are considered “rising star” cathode candidates for AZIBs. This comprehensive review discusses recent advances in MXenes as AZIB cathodes from the perspectives of crystal structure, Zn-storage mechanism, surface modification, interlayer engineering, and conductive network design to elucidate the correlations among their composition, structure, and electrochemical performance. This work also outlines the remaining challenges faced by MXenes for aqueous Zn-ion storage, such as the urgent need for improved toxic preparation methods, exploration of potential novel MXene cathodes, and suppression of layered MXene restacking upon cycling, and introduces the prospects of MXene-based cathode materials for high-performance AZIBs.

Keywords

aqueous zinc-ion batteries / MXenes / terminal groups / interlayer engineering / conductive network design

Cite this article

Download citation ▾
Aiduo Wu, Tianhao Wang, Long Zhang, Chen Chen, Qiaomin Li, Xuanhui Qu, Yongchang Liu. Recent advances and perspectives in MXene-based cathodes for aqueous zinc-ion batteries. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(7): 1752‒1765 https://doi.org/10.1007/s12613-024-2859-y

References

[1]
M. Song, H. Tan, D.L. Chao, and H.J. Fan, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1802564.
[2]
Liang YL, Dong H, Aurbach D, Yao Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy, 2020, 5: 646,
CrossRef Google scholar
[3]
X.Q. Zeng, M. Li, D. Abd El-Hady, et al., Commercialization of lithium battery technologies for electric vehicles, Adv. Energy Mater., 9(2019), No. 27, art. No. 1900161.
[4]
Wang LF, Geng MM, Ding XN, et al.. Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery. Int. J. Miner. Metall. Mater., 2021, 28(4): 538,
CrossRef Google scholar
[5]
Yang M, Bi RY, Wang JY, Yu RB, Wang D. Decoding lithium batteries through advanced in situ characterization techniques. Int. J. Miner. Metall. Mater., 2022, 29(5): 965,
CrossRef Google scholar
[6]
Zhang QB, Liu YC, Ji XB. Editorial for special issue on advanced materials for energy storage and conversion. Int. J. Miner. Metall. Mater., 2021, 28(10): 1545,
CrossRef Google scholar
[7]
Li N, Li YR, Zhu XH, Huang CX, Kai JJ, Fan J. Theoretical investigation of the structure–property correlation of MXenes as anode materials for alkali metal ion batteries. J. Phys. Chem. C, 2020, 124(28): 14978,
CrossRef Google scholar
[8]
Fang RY, Lu CW, Chen AQ, et al.. 2D MXene-based energy storage materials: Interfacial structure design and function-alization. ChemSusChem, 2020, 13(6): 1409,
CrossRef Google scholar
[9]
Yang D, Tan HT, Rui XH, Yu Y. Electrode materials for rechargeable zinc-ion and zinc-air batteries: Current status and future perspectives. Electrochem. Energy Rev., 2019, 2(3): 395,
CrossRef Google scholar
[10]
Cheng XB, Hou TZ, Zhang R, et al.. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater., 2016, 28(15): 2888,
CrossRef Google scholar
[11]
P.C. Ruan, S.Q. Liang, B.G. Lu, H.J. Fan, and J. Zhou, Design strategies for high-energy-density aqueous zinc batteries, Angew. Chem. Int. Ed., 61(2022), No. 17, art. No. e202200598.
[12]
Li HC, Wei ZW, Xia Y, Han JS, Li X. Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries. Int. J. Miner. Metall. Mater., 2023, 30(4): 621,
CrossRef Google scholar
[13]
Xiong LY, Fu H, Han WW, et al.. Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries. Int. J. Miner. Metall. Mater., 2022, 29(5): 1053,
CrossRef Google scholar
[14]
R. Zhao, J.J. Yang, X.M. Han, et al., Stabilizing Zn metal anodes via cation/anion regulation toward high energy density Zn-ion batteries, Adv. Energy Mater., 13(2023), No. 8, art. No. 2203542.
[15]
X.S. Xie, J.J. Li, Z.Y. Xing, B.G. Lu, S.Q. Liang, and J. Zhou, Biocompatible zinc battery with programmable electro-cross-linked electrolyte, Natl. Sci. Rev., 10(2023), No. 3, art. No. nwac281.
[16]
Wang X, Zhang ZCY, Xi BJ, et al.. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano, 2021, 15(6): 9244,
CrossRef Google scholar
[17]
Chuai MY, Yang JL, Wang MM, et al.. High-pefformance Zn battery with transition metal ions co-regulated electrolytic MnO2. eScience, 2021, 1(2): 178,
CrossRef Google scholar
[18]
Shi MJ, Zhu HT, Chen C, Jiang JT, Zhao LP, Yan C. Synergistically coupling of graphene quantum dots with Zn-in-tercalated MnO2 cathode for high-performance aqueous Zn-ion batteries. Int. J. Miner. Metall. Mater., 2023, 30(1): 25,
CrossRef Google scholar
[19]
J.H. Huang, Z. Wang, M.Y. Hou, et al., Polyaniline-intercal-ated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery, Nat. Commun., 9(2018), No. 1, art. No. 2906.
[20]
D.L. Chao, C. Ye, F.X. Xie, et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density, Adv. Mater., 32(2020), No. 25, art. No. 2001894.
[21]
Zhang AQ, Zhao R, Wang YH, Yang JJ, Wu C, Bai Y. Regulating the electronic structure of manganese-based materials to optimize the performance of zinc-ion batteries. Energy Environ. Sci., 2023, 16(8): 3240,
CrossRef Google scholar
[22]
Y. Tan, F.Q. An, Y.C. Liu, et al., Reaction kinetics in rechargeable zinc-ion batteries, J. Power Sources, 492(2021), art. No. 229655.
[23]
Zhu KY, Wu T, Huang K. A high capacity bilayer cathode for aqueous Zn-ion batteries. ACS Nano, 2019, 13(12): 14447,
CrossRef Google scholar
[24]
Y.X. Zhao, S.Q. Liang, X.D. Shi, et al., Synergetic effect of alkali-site substitution and oxygen vacancy boosting vanadate cathode for super-stable potassium and zinc storage, Adv. Funct. Mater., 32(2022), No. 32, art. No. 2203819.
[25]
L.T. Ma, S.M. Chen, C.B. Long, et al., Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction, Adv. Energy Mater., 9(2019), No. 45, art. No. 1902446.
[26]
Z.Y. Wu, F. Ye, Q. Liu, et al., Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage, Adv. Energy Mater., 12(2022), No. 23, art. No. 2200654.
[27]
Tan CL, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev., 2015, 44(9): 2713,
CrossRef Google scholar
[28]
D.B. Xiong, X.F. Li, Z.M. Bai, and S.G. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage, Small, 14(2018), No. 17, art. No. 1703419.
[29]
Y.T. Liu, X.D. Zhu, and L. Pan, Hybrid architectures based on 2D MXenes and low-dimensional inorganic nanostructures: Methods, synergies, and energy-related applications, Small, 14(2018), No. 51, art. No. 1803632.
[30]
S.W. Li, Y.C. Liu, X.D. Zhao, et al., Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries, Adv. Mater., 33(2021), No. 12, art No. 2007480.
[31]
Chen XF, Zhu YZ, Zhang M, et al.. N-Butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano, 2019, 13(8): 9449,
CrossRef Google scholar
[32]
Li ZY, Wang LB, Sun DD, Zhang YD, Liu BZ, Hu QK, Zhou AG. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. B, 2015, 191: 33,
CrossRef Google scholar
[33]
Naguib M, Kurtoglu M, Presser V, et al.. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23(37): 4248,
CrossRef Google scholar
[34]
C.D. Wang, S.Q. Wei, S.M. Chen, D.F. Cao, and L. Song, Delaminating vanadium carbides for zinc-ion storage: Hydrate precipitation and H+/Zn2+ co-action mechanism, Small Methods, 3(2019), No. 12, art. No. 1900495.
[35]
Liu Y, Wang S, Huang ZW, et al.. Recent advances and promise of zinc-ion energy storage devices based on MXenes. J. Mater. Sci., 2022, 57(29): 13817,
CrossRef Google scholar
[36]
M.S. Javed, A. Mateen, S. Ali, X. Zhang, et al., The emergence of 2D MXenes based Zn-ion batteries: Recent development and prospects, Small, 18(2022), No. 26, art. No. 2201989.
[37]
Chen J, Ding YB, Yan D, Huang JJ, Peng SL. Synthesis of MXene and its application for zinc-ion storage. SusMat, 2022, 2(3): 293,
CrossRef Google scholar
[38]
Narayanasamy M, Kirubasankar B, Shi MJ, et al.. Morphology restrained growth of V2O5 by the oxidation of V–MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chem. Commun., 2020, 56(47): 6412,
CrossRef Google scholar
[39]
Sha DW, Lu CJ, He W, et al.. Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano, 2022, 16(2): 2711,
CrossRef Google scholar
[40]
X.L. Li, M. Li, Q. Yang, et al., Vertically aligned Sn4+ preinter-calated Ti2CTx MXene sphere with enhanced Zn ion transportation and superior cycle lifespan, Adv. Energy Mater., 10(2020), No. 35, art. No. 2001394.
[41]
Zhu XD, Cao ZY, Wang WJ, et al.. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTx MXene. ACS Nano, 2021, 15(2): 2971,
CrossRef Google scholar
[42]
Zhu XD, Wang WJ, Cao ZY, et al.. Zn2+-intercalated V2O5·nH2O derived from V2CTx MXene for hyper-stable zinc-ion storage. J. Mater. Chem. A, 2021, 9(33): 17994,
CrossRef Google scholar
[43]
S.J. Luo, L.Y. Xie, F. Han, et al., Nanoscale parallel circuitry based on interpenetrating conductive assembly for flexible and high-power zinc ion battery, Adv. Funct. Mater., 29(2019), No. 28, art. No. 1901336.
[44]
M.J. Shi, B. Wang, Y. Shen, et al., 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries, Chem. Eng. J., 399(2020), art. No. 125627.
[45]
C.Z. Liu, W.W. Xu, C.T. Mei, M.C. Li, X.W. Xu, and Q.L. Wu, Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan, Chem. Eng. J., 405(2021), art. No. 126737.
[46]
Barsoum MW. The M N+1AXN phases: A new class of solids Thermodynamically stable nanolaminates. Prog. Solid State Chem., 2000, 28(1–4): 201,
CrossRef Google scholar
[47]
Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater., 2014, 26(7): 992,
CrossRef Google scholar
[48]
Chen HX, Yang DL, Zhang QH, et al.. A series of MAX phases with MA-triangular-prism bilayers and elastic properties. Angew. Chem. Int. Ed., 2019, 58(14): 4576,
CrossRef Google scholar
[49]
B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2(2017), No. 2, art. No. 16098.
[50]
Venkatkarthick R, Rodthongkum N, Zhang XY, et al.. Vanadium-based oxide on two-dimensional vanadium carbide MXene (V2Ox@V2CTx) as cathode for rechargeable aqueous zinc-ion batteries. ACS Appl. Energy Mater., 2020, 3(5): 4677,
CrossRef Google scholar
[51]
Li M, Li XL, Qin GF, et al.. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano, 2021, 15(1): 1077,
CrossRef Google scholar
[52]
Li XL, Li M, Huang ZD, et al.. Activating the I0/I+ redox couple in an aqueous I2–Zn battery to achieve a high voltage plateau. Energy Environ. Sci., 2021, 14(1): 407,
CrossRef Google scholar
[53]
C. Chen, T.H. Wang, X.D. Zhao, et al., Customizing hydrophilic terminations for V2CTx MXene toward superior hybrid-ion storage in aqueous zinc batteries, Adv. Funct. Mater., 34(2024), No. 9, art. No. 2308508.
[54]
Srivastava P, Mishra A, Mizuseki H, Lee KR, Singh AK. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl. Mater. Interfaces, 2016, 8(36): 24256,
CrossRef Google scholar
[55]
Wang XF, Shen X, Gao YR, Wang ZX, Yu RC, Chen LQ. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc., 2015, 137(7): 2715,
CrossRef Google scholar
[56]
Xu C, Wang LB, Liu ZB, et al.. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater., 2015, 14(11): 1135,
CrossRef Google scholar
[57]
Y. Wei, P. Zhang, R.A. Soomro, Q.Z. Zhu, and B. Xu, Advances in the synthesis of 2D MXenes, Adv. Mater., 33(2021), No. 39, art. No. 2103148.
[58]
C.D. Wang, S.M. Chen, and L. Song, Tuning 2D MXenes by surface controlling and interlayer engineering: Methods, properties, and synchrotron radiation characterizations, Adv. Funct. Mater., 30(2020), No. 47, art. No. 2000869.
[59]
F. Malchik, N. Shpigel, M.D. Levi, et al., MXene conductive binder for improving performance of sodium-ion anodes in water-in-salt electrolyte, Nano Energy, 79(2021), art. No. 105433.
[60]
Gogotsi Y, Huang Q. MXenes: Two-dimensional building blocks for future materials and devices. ACS Nano, 2021, 15(4): 5775,
CrossRef Google scholar
[61]
Sarycheva A, Makaryan T, Maleski K, et al.. Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J. Phys. Chem. C, 2017, 121(36): 19983,
CrossRef Google scholar
[62]
E. Pomerantseva and Y. Gogotsi, Two-dimensional heterostructures for energy storage, Nat. Energy, 2(2017), No. 7, art. No. 17089.
[63]
Li TF, Yao LL, Liu QL, et al.. Fluorine-free synthesis of high-purity Ti3C2Tx(T = OH, O) via alkali treatment. Angew. Chem. Int. Ed, 2018, 57(21): 6115,
CrossRef Google scholar
[64]
Han MK, Maleski K, Shuck CE, et al.. Tailoring electronic and optical properties of MXenes through forming solid solutions. J. Am. Chem. Soc., 2020, 142(45): 19110,
CrossRef Google scholar
[65]
Schultz T, Frey NC, Hantanasirisakul K, et al.. Surface termination dependent work function and electronic properties of Ti3C2Tx MXene. Chem. Mater., 2019, 31(17): 6590,
CrossRef Google scholar
[66]
Zhang CFJ. Interfacial assembly of two-dimensional MXenes. J. Energy Chem., 2021, 60: 417,
CrossRef Google scholar
[67]
Lian PC, Dong YF, Wu ZS, et al.. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy, 2017, 40: 1,
CrossRef Google scholar
[68]
Rakhi RB, Ahmed B, Hedhili MN, Anjum DH, Alshareef HN. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater., 2015, 27(15): 5314,
CrossRef Google scholar
[69]
X.L. Li, M. Li, Q. Yang, et al., In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery, Adv. Energy Mater., 10(2020), No. 36, art. No. 2001791.
[70]
Li XL, Li M, Yang Q, et al.. Phase transition induced unusual electrochemical performance of V2CTx MXene for aqueous zinc hybrid-ion battery. ACS Nano, 2020, 14(1): 541,
CrossRef Google scholar
[71]
Tian Y, An YL, Wei H, et al.. Micron-sized nanoporous vanadium pentoxide arrays for high-performance gel zinc-ion batteries and potassium batteries. Chem. Mater., 2020, 32(9): 4054,
CrossRef Google scholar
[72]
Y. Liu, Y. Jiang, Z. Hu, et al., In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries, Adv. Funct. Mater., 31(2021), No. 8, art. No. 2008033.
[73]
Chen J, Xiao BQ, Hu CF, et al.. Construction strategy of VO2@V2C 1D/2D heterostructure and improvement of zinc-ion diffusion ability in VO2 (B). ACS Appl. Mater. Interfaces, 2022, 14(25): 28760,
CrossRef Google scholar
[74]
Gao Q, Sun WW, Ilani-Kashkouli P, et al.. Tracking ion intercalation into layered Ti3C2 MXene films across length scales. Energy Environ. Sci., 2020, 13(8): 2549,
CrossRef Google scholar
[75]
Z.L. Li, Y.F. Wei, Y.Y. Liu, S. Yan, and M.Y. Wu, Dual strategies of metal preintercalation and in situ electrochemical oxidization operating on MXene for enhancement of ion/electron transfer and zinc-ion storage capacity in aqueous zinc-ion batteries, Adv. Sci., 10(2023), No. 8, art. No. e2206860.
[76]
O. Mashtalir, M. Naguib, V.N. Mochalin, et al., Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun., 4(2013), art. No. 1716.
[77]
Wang HB, Zhang JF, Wu YP, Huang HJ, Jiang QG. Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance. J. Phys. Chem. Solids, 2018, 115: 172,
CrossRef Google scholar
[78]
F.F. Liu, Y.C. Liu, X.D. Zhao, K.Y. Liu, H.Q. Yin, and L.Z. Fan, Prelithiated V2C MXene: A high-performance electrode for hybrid magnesium/lithium-ion batteries by ion cointercalation, Small, 16(2020), No. 8, art. No. 1906076.
[79]
Zhao RZ, Di HX, Wang CX, et al.. Encapsulating ultrafine Sb nanoparticles in Na+ pre-intercalated 3D porous Ti3C2Tx MXene nanostructures for enhanced potassium storage performance. ACS Nano, 2020, 14(10): 13938,
CrossRef Google scholar
[80]
Lu M, Han WJ, Li HJ, et al.. Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity. Energy Storage Mater., 2019, 16: 163,
CrossRef Google scholar
[81]
Zhao MQ, Ren CE, Alhabeb M, Anasori B, Barsoum MW, Gogotsi Y. Magnesium-ion storage capability of MXenes. ACS Appl. Energy Mater., 2019, 2(2): 1572,
CrossRef Google scholar
[82]
J. Li, X.T. Yuan, C. Lin, et al., Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification, Adv. Energy Mater., 7(2017), No. 15, art. No. 1602725.
[83]
P.A. Maughan, N. Tapia-Ruiz, and N. Bimbo, In-situ pillared MXene as a viable zinc-ion hybrid capacitor, Electrochim. Acta, 341(2020), art. No. 136061.
[84]
Shi MJ, Wang B, Chen C, Lang JW, Yan C, Yan XB. 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries. J. Mater. Chem. A, 2020, 8(46): 24635,
CrossRef Google scholar
[85]
Zhu XD, Cao ZY, Li XL, et al.. Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and longlife Zn-ion batteries. Energy Storage Mater., 2022, 45: 568,
CrossRef Google scholar
[86]
Q. Wang, S.L. Wang, X.H. Guo, et al., MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life, Adv. Electron. Mater., 5(2019), No. 12, art. No. 1900537.
[87]
X.L. Li, M. Li, W.Y. Xu, et al., V2CTx MXene sphere for aqueous ion storage, Energy Mater. Adv., 4(2023), art. No. 0066.
[88]
J.J. Shi, Y.X. Hou, Z.Y. Liu, et al., The high-performance MoO3−x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering, Nano Energy, 91(2022), art. No. 106651.
[89]
W.Y. Du, L. Miao, Z.Y. Song, et al., Kinetics-driven design of 3D VN/MXene composite structure for superior zinc storage and charge transfer, J. Power Sources, 536(2022), art. No. 231512.

Accesses

Citations

Detail

Sections
Recommended

/