Spin logic devices based on negative differential resistance-enhanced anomalous Hall effect

Hongming Mou, Ziyao Lu, Yuchen Pu, Zhaochu Luo, Xiaozhong Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (6) : 1437-1448. DOI: 10.1007/s12613-024-2855-2
Invited Review

Spin logic devices based on negative differential resistance-enhanced anomalous Hall effect

Author information +
History +

Abstract

Owing to rapid developments in spintronics, spin-based logic devices have emerged as promising tools for next-generation computing technologies. This paper provides a comprehensive review of recent advancements in spin logic devices, particularly focusing on fundamental device concepts rooted in nanomagnets, magnetoresistive random access memory, spin–orbit torques, electric-field modulation, and magnetic domain walls. The operation principles of these devices are comprehensively analyzed, and recent progress in spin logic devices based on negative differential resistance-enhanced anomalous Hall effect is summarized. These devices exhibit reconfigurable logic capabilities and integrate nonvolatile data storage and computing functionalities. For current-driven spin logic devices, negative differential resistance elements are employed to nonlinearly enhance anomalous Hall effect signals from magnetic bits, enabling reconfigurable Boolean logic operations. Besides, voltage-driven spin logic devices employ another type of negative differential resistance element to achieve logic functionalities with excellent cascading ability. By cascading several elementary logic gates, the logic circuit of a full adder can be obtained, and the potential of voltage-driven spin logic devices for implementing complex logic functions can be verified. This review contributes to the understanding of the evolving landscape of spin logic devices and underscores the promising prospects they offer for the future of emerging computing schemes.

Keywords

spin logic / spin–orbit torque / negative differential resistance / full-adder

Cite this article

Download citation ▾
Hongming Mou, Ziyao Lu, Yuchen Pu, Zhaochu Luo, Xiaozhong Zhang. Spin logic devices based on negative differential resistance-enhanced anomalous Hall effect. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(6): 1437‒1448 https://doi.org/10.1007/s12613-024-2855-2

References

[[1]]
H. Li and Y.R. Chen, An overview of non-volatile memory technology and the implication for tools and architectures, [in] 2009 Design, Automation & Test in Europe Conference & Exhibition, Nice. 2009, p. 731.
[[2]]
A. Hoffmann and S.D. Bader, Opportunities at the frontiers of spintronics, Phys. Rev. Applied, 4(2015), No. 4, art. No. 047001.
[[3]]
Dieny B, Prejbeanu IL, Garello K, et al.. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron., 2020, 3(8): 446,
CrossRef Google scholar
[[4]]
G. Finocchio, M. Di Ventra, K.Y. Camsari, K. Everschor-Sitte, P. Khalili Amiri, and Z.M. Zeng, The promise of spintronics for unconventional computing, J. Magn. Magn. Mater., 521(2021), art. No. 167506.
[[5]]
Liu CC, Ganusov I, Burtscher M, Tiwari S. Bridging the processor-memory performance gap with 3D IC technology. IEEE Des. Test Comput., 2005, 22(6): 556,
CrossRef Google scholar
[[6]]
Wu XX, Li J, Zhang LX, Speight E, Rajamony R, Xie Y. Hybrid cache architecture with disparate memory technologies. ACM SIGARCH Comput. Archit. News, 2009, 37(3): 34,
CrossRef Google scholar
[[7]]
M. Horowitz, 1.1 Computing’s energy problem (and what we can do about it), [in] 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2014, p. 10.
[[8]]
Backus J. Can programming be liberated from the von Neumann style?. Commun. ACM, 1978, 21(8): 613,
CrossRef Google scholar
[[9]]
D.L. Fan, S. Angizi, and Z.Z. He, In-memory computing with spintronic devices, [in] 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Bochum, 2017, p. 683.
[[10]]
Wolf SA, Awschalom DD, Buhrman RA, et al.. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294(5546): 1488,
CrossRef Pubmed Google scholar
[[11]]
Imre A, Csaba G, Ji L, Orlov A, Bernstein GH, Porod W. Majority logic gate for magnetic quantum-dot cellular automata. Science, 2006, 311(5758): 205,
CrossRef Pubmed Google scholar
[[12]]
Bhowmik D, You L, Salahuddin S. Spin Hall effect clocking of nanomagnetic logic without a magnetic field. Nat. Nanotechnol., 2014, 9(1): 59,
CrossRef Pubmed Google scholar
[[13]]
Zabihi M, Chowdhury ZI, Zhao ZY, Karpuzcu UR, Wang JP, Sapatnekar SS. In-memory processing on the spintronic CRAM: From hardware design to application mapping. IEEE Trans. Comput., 2019, 68(8): 1159,
CrossRef Google scholar
[[14]]
M.K. Zhao, C.H. Wan, X.M. Luo, et al., Field-free programmable spin logics based on spin Hall effect, Appl. Phys. Lett., 119(2021), No. 21, art. No. 212405.
[[15]]
Li RZ, Li YC, Sheng Y, Bekele ZA, Wang KY. All-electrical multifunctional spin logics by adjusting the spin current density gradient in a single device. ACS Appl. Electron. Mater., 2021, 3(6): 2646,
CrossRef Google scholar
[[16]]
X. Wang, C.H. Wan, W.J. Kong, et al., Field-free programmable spin logics via chirality-reversible spin–orbit torque switching, Adv. Mater., 30(2018), No. 31, art. No. e1801318.
[[17]]
C.H. Wan, X. Zhang, Z.H. Yuan, et al., Programmable spin logic based on spin Hall effect in a single device, Adv. Electron. Mater., 3(2017), No. 3, art. No. 1600282
[[18]]
Zhang X, Wan CH, Yuan ZH, et al.. Experimental demonstration of programmable multi-functional spin logic cell based on spin Hall effect. J. Magn. Magn. Mater., 2017, 428: 401,
CrossRef Google scholar
[[19]]
N. Zhang, Y. Cao, Y.C. Li, et al., Complementary lateral-spin–orbit building blocks for programmable logic and Inmemory computing, Adv. Electron. Mater., 6(2020), No. 8, art. No. 2000296.
[[20]]
Li ML, Li CX, Xu XG, et al.. An ultrathin flexible programmable spin logic device based on spin–orbit torque. Nano Lett., 2023, 23(9): 3818,
CrossRef Pubmed Google scholar
[[21]]
Chiba D, Fukami S, Shimamura K, Ishiwata N, Kobayashi K, Ono T. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat. Mater., 2011, 10(11): 853,
CrossRef Pubmed Google scholar
[[22]]
Shiota Y, Nozaki T, Bonell F, Murakami S, Shinjo T, Suzuki Y. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater., 2012, 11(1): 39,
CrossRef Google scholar
[[23]]
Zhang XX, Li L, Weber D, Goldberger J, Mak KF, Shan J. Gate-tunable spin waves in antiferromagnetic atomic bilayers. Nat. Mater., 2020, 19(8): 838,
CrossRef Pubmed Google scholar
[[24]]
S. Zhang, Y.G. Zhao, P.S. Li, et al., Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 structure at room temperature, Phys. Rev. Lett., 108(2012), No. 13, art. No. 137203.
[[25]]
T. Wu, A. Bur, K. Wong, et al., Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices, Appl. Phys. Lett., 98(2011), No. 26, art. No. 262504.
[[26]]
Chen XZ, Shi SY, Shi GY, et al.. Observation of the antiferromagnetic spin Hall effect. Nat. Mater., 2021, 20(6): 800,
CrossRef Pubmed Google scholar
[[27]]
P. Borisov, A. Hochstrat, X. Chen, W. Kleemann, and C. Binek, Magnetoelectric Switching of Exchange Bias, Phys. Rev. Lett., 94(2005). No. 11, art. No. 117203.
[[28]]
He X, Wang Y, Wu N, et al.. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater., 2010, 9(7): 579,
CrossRef Pubmed Google scholar
[[29]]
W. Echtenkamp and C. Binek, Electric control of exchange bias training, Phys. Rev. Lett., 111(2013), No. 18, art. No. 187204.
[[30]]
Wang YY, Zhou X, Song C, et al.. Electrical control of the exchange spring in antiferromagnetic metals. Adv. Mater., 2015, 27(20): 3196,
CrossRef Pubmed Google scholar
[[31]]
Heron JT, Bosse JL, He Q, et al.. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature, 2014, 516(7531): 370,
CrossRef Pubmed Google scholar
[[32]]
X. Han, Y.B. Fan, D. Wang, et al., Fully electrical controllable spin–orbit torque based half-adder, Appl. Phys. Lett., 122(2023), No. 5, art. No. 052404.
[[33]]
Cui B, Song C, Mao HJ, et al.. Manipulation of electric field effect by orbital switch. Adv. Funct. Mater., 2016, 26(5): 753,
CrossRef Google scholar
[[34]]
M.K. Niranjan, C.G. Duan, S.S. Jaswal, and E.Y. Tsymbal, Electric field effect on magnetization at the Fe/MgO(001) interface, Appl. Phys. Lett., 96(2010), No. 22, art. No. 222504.
[[35]]
Bauer U, Yao LD, Tan AJ, et al.. Magneto-ionic control of interfacial magnetism. Nat. Mater., 2015, 14(2): 174,
CrossRef Pubmed Google scholar
[[36]]
C. Bi, Y.H. Liu, T. Newhouse-Illige, et al., Reversible control of Co magnetism by voltage-induced oxidation, Phys. Rev. Lett., 113(2014), No. 26, art. No. 267202.
[[37]]
Z.Y. Ren, M.X. Wang, P.F. Liu, et al., Spin logical and memory device based on the nonvolatile ferroelectric control of the perpendicular magnetic anisotropy in PbZr0.2Ti0.8O3/Co/Pt heterostructure, Adv. Electron. Mater., 6(2020), No. 6, art. No. 2000102.
[[38]]
Baek SHC, Park KW, Kil DS, et al.. Complementary logic operation based on electric-field controlled spin–orbit torques. Nat. Electron., 2018, 1(7): 398,
CrossRef Google scholar
[[39]]
Z.D. Zhang, Y.W. Zhang, R.S. Wang, L. Zeng, and R. Huang, Reconfigurable logic based on voltage-controlled magnetic tunnel junction (VC-MTJ) for stochastic computing, [in] 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, 2018, p. 1.
[[40]]
Shreya S, Jain A, Kaushik BK. Computing-in-memory architecture using energy-efficient multilevel voltage-controlled spin–orbit torque device. IEEE Trans. Electron Devices, 2020, 67(5): 1972,
CrossRef Google scholar
[[41]]
Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP. Magnetic domain-wall logic. Science, 2005, 309(5741): 1688,
CrossRef Pubmed Google scholar
[[42]]
Allwood DA, Xiong G, Cooke MD, et al.. Submicrometer ferromagnetic NOT gate and shift register. Science, 2002, 296(5575): 2003,
CrossRef Pubmed Google scholar
[[43]]
K.A. Omari and T.J. Hayward, Chirality-based vortex domainwall logic gates, Phys. Rev. Applied, 2(2014), No. 4, art. No. 044001.
[[44]]
Luo ZC, Hrabec A, Dao TP, et al.. Current-driven magnetic domain-wall logic. Nature, 2020, 579(7798): 214,
CrossRef Pubmed Google scholar
[[45]]
Z.R. Yan, Y.Z. Liu, Y. Guang, et al., Skyrmion-based programmable logic device with complete Boolean logic functions, Phys. Rev. Applied, 15(2021), No. 6, art. No. 064004.
[[46]]
Z.Z. Zhang, K.L. Lin, Y. Zhang, et al., Magnon scattering modulated by omnidirectional hopfion motion in antiferromagnets for meta-learning, Sci. Adv., 9(2023), No. 6, art. No. eade7439.
[[47]]
Z.C. Luo, Z.Y. Lu, C.Y. Xiong, et al., Reconfigurable magnetic logic combined with nonvolatile memory writing, Adv. Mater., 29(2017), No. 4, art. No. 1605027.
[[48]]
Avanic B, Gonzalez G, Premaratne K, Rodriguez A. Negative resistance design for crystal oscillators. Int. J. Electron., 1989, 67(6): 869,
CrossRef Google scholar
[[49]]
Son M, Lee J, Park J, et al.. Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications. IEEE Electron Device Lett., 2011, 32(11): 1579,
CrossRef Google scholar
[[50]]
J. Sakai, High-efficiency voltage oscillation in VO2 planer-type junctions with infinite negative differential resistance, J. Appl. Phys., 103(2008), No. 10, art. No. 103708.
[[51]]
H.M. Mou, Z.C. Luo, and X.Z. Zhang, A magnetic-field-driven neuristor for spiking neural networks, Appl. Phys. Lett., 122(2023), No. 25, art. No. 250601.
[[52]]
Bonnefoi AR, McGill TC, Burnham RD. Resonant tunneling transistors with controllable negative differential resistances. IEEE Electron Device Lett., 1985, 6(12): 636,
CrossRef Google scholar
[[53]]
Z.Y. Lu, C.Y. Xiong, H.M. Mou, et al., Nonvolatile magnetic half adder combined with memory writing, Appl. Phys. Lett., 118(2021), No. 18, art. No. 182402.
[[54]]
R. Singh, Z.C. Luo, Z.Y. Lu, A.S. Saleemi, C.Y. Xiong, and X.Z. Zhang, Thermal stability of NDR-assisted anomalous Hall effect based magnetic device, J. Appl. Phys., 125(2019), No. 20, art. No. 203901.
[[55]]
Y.C. Pu, H.M. Mou, Z.Y. Lu, et al., Speed enhancement of magnetic logic-memory device by insulator-to-metal transition, Appl. Phys. Lett., 117(2020), No. 2, art. No. 022407.
[[56]]
Liu LQ, Pai CF, Li Y, Tseng HW, Ralph DC, Buhrman RA. Spin-torque switching with the giant spin Hall effect of tantalum. Science, 2012, 336(6081): 555,
CrossRef Pubmed Google scholar
[[57]]
Y.C. Pu, Z.Y. Lu, H.M. Mou, X.X. Zhang, and X.Z. Zhang, Ultrafast and ultralow-power voltage-dominated magnetic logic, Adv. Intell. Syst., 4(2022), No. 5, art. No. 2100157.
[[58]]
Lu ZX. . Research on Magnetic Logic Devices Based on Magnetic Films with Perpendicular Magnetic Anisotropy, 2022 Beijing Tsinghua University 73 [Dissertation]
[[59]]
Garg S, Gupta TK. FDSTDL: Low-power technique for FinFET domino circuits. Int. J. Circuit Theory Appl., 2019, 47(6): 917,
CrossRef Google scholar
[[60]]
Z.Y. Lu, H.M. Mou, Y.C. Pu, Y. Wen, X.X. Zhang, and X.Z. Zhang, Magnetic full adder based on negative differential resistance-enhanced anomalous Hall effect, IEEE Magn. Lett., 13(2022), art. No. 4502405.

Accesses

Citations

Detail

Sections
Recommended

/