Improvement strategy on thermophysical properties of A2B2O7-type rare earth zirconates for thermal barrier coatings applications: A review

Zijian Peng, Yuhao Wang, Shuqi Wang, Junteng Yao, Qingyuan Zhao, Enyu Xie, Guoliang Chen, Zhigang Wang, Zhanguo Liu, Yaming Wang, Jiahu Ouyang

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (5) : 1147-1165. DOI: 10.1007/s12613-024-2853-4
Invited Review

Improvement strategy on thermophysical properties of A2B2O7-type rare earth zirconates for thermal barrier coatings applications: A review

Author information +
History +

Abstract

The A2B2O7-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating (TBC) materials because of their low sintering rate, improved phase stability, and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments. This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines. Based on the first principles, molecular dynamics, and new data-driven calculation approaches, doping and high-entropy strategies have now been adopted in advanced TBC materials design. In this paper, the solid-state heat transfer mechanism of TBCs is explained from two aspects, including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature. This paper also provides new insights into design considerations of adaptive TBC materials, and the challenges and potential breakthroughs are further highlighted for extreme environmental applications. Strategies for improving thermophysical performance are proposed in two approaches: defect engineering and material compositing.

Keywords

rare earth zirconates / thermal barrier coatings / defect engineering / doping and compositing / thermal conductivity / thermal expansion

Cite this article

Download citation ▾
Zijian Peng, Yuhao Wang, Shuqi Wang, Junteng Yao, Qingyuan Zhao, Enyu Xie, Guoliang Chen, Zhigang Wang, Zhanguo Liu, Yaming Wang, Jiahu Ouyang. Improvement strategy on thermophysical properties of A2B2O7-type rare earth zirconates for thermal barrier coatings applications: A review. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(5): 1147‒1165 https://doi.org/10.1007/s12613-024-2853-4

References

[1]
Chen HF, Zhang C, Liu YC, et al.. Recent progress in thermal/environmental barrier coatings and their corrosion resistance. Rare Met., 2020, 39(5): 498,
CrossRef Google scholar
[2]
Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296(5566): 280,
CrossRef Google scholar
[3]
Padture NP. Advanced structural ceramics in aerospace propulsion. Nat. Mater., 2016, 15: 804,
CrossRef Google scholar
[4]
Levi CG, Hutchinson JW, Vidal-Sétif MH, Johnson CA. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull., 2012, 37(10): 932,
CrossRef Google scholar
[5]
Clarke DR, Levi CG. Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res., 2003, 33: 383,
CrossRef Google scholar
[6]
Liu ZG, Zhang WH, Ouyang JH, Zhou Y. Novel double-ceramic-layer (La0.8Eu0.2)2Zr2O7/YSZ thermal barrier coatings deposited by plasma spraying. Ceram. Int., 2014, 40(7): 11277,
CrossRef Google scholar
[7]
Liu ZG, Zhang WH, Ouyang JH, Zhou Y. Novel thermal barrier coatings based on rare-earth zirconates/YSZ double-ceramic-layer system deposited by plasma spraying. J. Alloys Compd., 2015, 647: 438,
CrossRef Google scholar
[8]
Schulz U, Leyens C, Fritscher K, et al.. Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp. Sci. Technol., 2003, 7(1): 73,
CrossRef Google scholar
[9]
Cao XQ, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc., 2004, 24(1): 1,
CrossRef Google scholar
[10]
Vassen R, Cao XQ, Tietz F, Basu D, Stöver D. Zirconates as new materials for thermal barrier coatings. J. Am. Ceram. Soc., 2000, 83(8): 2023,
CrossRef Google scholar
[11]
Zhao M, Pan W, Wan CL, Qu ZX, Li Z, Yang J. Defect engineering in development of low thermal conductivity materials: A review. J. Eur. Ceram. Soc., 2017, 37(1): 1,
CrossRef Google scholar
[12]
Gild J, Samiee M, Braun JL, et al.. High-entropy fluorite oxides. J. Eur. Ceram. Soc., 2018, 38(10): 3578,
CrossRef Google scholar
[13]
Lackey WJ, Stinton DP, Cerny GA, Schaffhauser AC, Fehrenbacher LL. Ceramic coatings for advanced heat engines-A review and projection. Adv. Ceram. Mater., 1987, 2(1): 24,
CrossRef Google scholar
[14]
Xu CH, Jin HY, Zhang QF, et al.. A novel Co-ions complexation method to synthesize pyrochlore La2Zr2O7. J. Eur. Ceram. Soc., 2017, 37(8): 2871,
CrossRef Google scholar
[15]
Zhang HS, Xu Q, Wang FC, Liu L, Wei Y, Chen XG. Preparation and thermophysical properties of (Sm0.5La0.5)2Zr2O7 and (Sm0.5La0.5)2(Zr0.8Ce0.2)2O7 ceramics for thermal barrier coatings. J. Alloys Compd., 2009, 475(1–2): 624
[16]
Padture NP, Klemens PG. Low thermal conductivity in garnets. J. Am. Ceram. Soc., 1997, 80(4): 1018,
CrossRef Google scholar
[17]
C.J. Friedrich, R. Gadow, and M.H. Lischka, Lanthanum hexaaluminate thermal barrier coatings, [in] 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings, Florida, 2001, p. 375.
[18]
G.W. Schafer and R. Gadow, Lanthane aluminate thermal barrier coating, [in] 23nd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures B: Ceramic Engineering and Science Proceedings, Hoboken, 1999, p. 291.
[19]
Chen L, Hu MY, Wu P, Feng J. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics. J. Am. Ceram. Soc., 2019, 102(8): 4809,
CrossRef Google scholar
[20]
Chen L, Song P, Feng J. Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics. Scripta Mater., 2018, 152: 117,
CrossRef Google scholar
[21]
Yang J, Pan W, Han Y, Zhao M, Huang MZ, Wan CL. Mechanical properties, oxygen barrier property, and chemical stability of RE3NbO7 for thermal barrier coating. J. Am. Ceram. Soc., 2020, 103(4): 2302,
CrossRef Google scholar
[22]
Shi DD, Cao ZB, Huang YH, et al.. Highly efficient thermal insulation in crystalline weberites RE3NbO7 (RE = La, Nd, Sm, Eu, Gd) with glass-like thermal conductivity. Ceram. Int., 2022, 48(2): 2686,
CrossRef Google scholar
[23]
Morgan PED, Marshall DB. Ceramic composites of monazite and alumina. J. Am. Ceram. Soc., 1995, 78(6): 1553,
CrossRef Google scholar
[24]
Vassen R, Kerkhoff G, Stöver D. Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings. Mater. Sci. Eng. A, 2001, 303(1–2): 100,
CrossRef Google scholar
[25]
S. Akrami, P. Edalati, M. Fuji, and K. Edalati, High-entropy ceramics: Review of principles, production and applications, Mater. Sci. Eng. R Rep., 146(2021), art. No. 100644.
[26]
Zhang RZ, Reece MJ. Review of high entropy ceramics: Design, synthesis, structure and properties. J. Mater. Chem. A, 2019, 7(39): 22148,
CrossRef Google scholar
[27]
Wright AJ, Luo J. A step forward from high-entropy ceramics to compositionally complex ceramics: A new perspective. J. Mater. Sci., 2020, 55(23): 9812,
CrossRef Google scholar
[28]
A.J. Wright, Q.Y. Wang, C.Z. Hu, Y.T. Yeh, R.K. Chen, and J. Luo, Single-phase duodenary high-entropy fluorite/pyrochlore oxides with an order-disorder transition, Acta Mater., 211(2021), art. No. 116858.
[29]
Zhao ZF, Xiang HM, Dai FZ, Peng ZJ, Zhou YC. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate. J. Mater. Sci. Technol., 2019, 35(11): 2647,
CrossRef Google scholar
[30]
Divilov S, Eckert H, Hicks D, et al.. Disordered enthalpy-entropy descriptor for high-entropy ceramics discovery. Nature, 2024, 625(7993): 66,
CrossRef Google scholar
[31]
Grimvall G. . Thermophysical Properties of Materias, 1999 Amsterdam Elsevier
[32]
Kingery WD, Bowen HK, Uhlmann DR. . Introduction to Ceramics, 1976 New York John Wiley & Sons
[33]
Holland MG. Analysis of lattice thermal conductivity. Phys. Rev., 1963, 132(6): 2461,
CrossRef Google scholar
[34]
Abeles B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev., 1963, 131(5): 1906,
CrossRef Google scholar
[35]
Klemens PG. Thermal resistance due to point defects at high temperatures. Phys. Rev., 1960, 119(2): 507,
CrossRef Google scholar
[36]
Callaway J, von Baeyer HC. Effect of point imperfections on lattice thermal conductivity. Phys. Rev., 1960, 120(4): 1149,
CrossRef Google scholar
[37]
He XD, Li YB, Wang LD, Sun Y, Zhang S. High emissivity coatings for high temperature application: Progress and prospect. Thin Solid Films, 2009, 517(17): 5120,
CrossRef Google scholar
[38]
D.L. Zhao, A. Aili, Y. Zhai, et al., Radiative sky cooling: Fundamental principles, materials, and applications, Appl. Phys. Rev., 6(2019), No. 2, art. No. 021306.
[39]
Zhao B, Hu MK, Ao XZ, Chen N, Pei G. Radiative cooling: A review of fundamentals, materials, applications, and prospects. Appl. Energy, 2019, 236: 489,
CrossRef Google scholar
[40]
Liu HZ, Ouyang JH, Liu ZG, Wang YM. Thermo-optical properties of LaMAl11O19 (M=Mg, Mn, Fe) hexaaluminates for high-temperature thermal protection applications. J. Am. Ceram. Soc., 2011, 94(10): 3195,
CrossRef Google scholar
[41]
G.L. Chen, H.Y. Fu, Y.C. Zou, et al., A promising radiation thermal protection coating based on lamellar porous Ca–Cr co-doped Y3NbO7 ceramic, Adv. Funct. Mater., 33(2023), No. 47, art. No. 2305650.
[42]
Wang SM, Kuang FH, Yan QZ, Ge CC, Qi LH. Crystallization and infrared radiation properties of iron ion doped cordierite glass-ceramics. J. Alloys Compd., 2011, 509(6): 2819,
CrossRef Google scholar
[43]
K. Krieble, T. Schaeffer, J.A. Paulsen, A.P. Ring, C.C.H. Lo, and J.E. Snyder, Mössbauer spectroscopy investigation of Mn-substituted Co–ferrite (CoMnxFe2−xO4), J. Appl. Phys., 97(2005), No. 10, art. No. 10F101.
[44]
Subramanian MA, Aravamudan G, Rao GVS. Oxide pyrochlores–A review. Prog. Solid State Chem., 1983, 15(2): 55,
CrossRef Google scholar
[45]
Liu ZG, Ouyang JH, Zhou Y. Preparation and thermophysical properties of (NdxGd1−x)2Zr2O7 ceramics. J. Mater. Sci., 2008, 43(10): 3596,
CrossRef Google scholar
[46]
Liu ZG, Ouyang JH, Zhou Y. Structural evolution and thermophysical properties of (SmxGd1−x)2Zr2O7 (0 ≤ x ≤ 1.0) ceramics. J. Alloys Compd., 2009, 472(1–2): 319,
CrossRef Google scholar
[47]
Liu ZG, Ouyang JH, Zhou Y, Li J, Xia XL. Influence of ytterbium- and samarium-oxides codoping on structure and thermal conductivity of zirconate ceramics. J. Eur. Ceram. Soc., 2009, 29(4): 647,
CrossRef Google scholar
[48]
Liu ZG, Ouyang JH, Zhou Y, Li J, Xia XL. Densification, structure, and thermophysical properties of ytterbium–gadolinium zirconate ceramics. Int. J. Appl. Ceram. Technol., 2009, 6(4): 485,
CrossRef Google scholar
[49]
Wan CL, Zhang W, Wang YF, et al.. Glass-like thermal conductivity in ytterbium-doped lanthanum zirconate pyrochlore. Acta Mater., 2010, 58(18): 6166,
CrossRef Google scholar
[50]
Wan CL, Qu ZX, Du AB, Pan W. Order-disorder transition and unconventional thermal conductivities of the (Sm1−xYbx)2Zr2O7 series. J. Am. Ceram. Soc., 2011, 94(2): 592,
CrossRef Google scholar
[51]
Ren XR, Wan CL, Zhao M, Yang J, Pan W. Mechanical and thermal properties of fine-grained quasi-eutectoid (La1−xYbx)2Zr2O7 ceramics. J. Eur. Ceram. Soc., 2015, 35(11): 3145,
CrossRef Google scholar
[52]
Wu Y, Zheng L, He WT, He J, Guo HB. Effects of Yb3+ doping on phase structure, thermal conductivity and fracture toughness of (Nd1−xYbx)2Zr2O7. Ceram. Int., 2019, 45(3): 3133,
CrossRef Google scholar
[53]
Zhang HS, Sun K, Xu Q, Wang FC, Liu L. Preparation and thermal conductivity of Sm2(Zr0.6Ce0.4)2O7 ceramic. J. Mater. Eng. Perform., 2009, 18(8): 1140,
CrossRef Google scholar
[54]
Yang J, Zhao M, Zhang L, Wang ZY, Pan W. Pronounced enhancement of thermal expansion coefficients of rare-earth zirconate by cerium doping. Scripta Mater., 2018, 153: 1,
CrossRef Google scholar
[55]
Fan QB, Zhang F, Wang FC, Wang L. Molecular dynamics calculation of thermal expansion coefficient of a series of rare-earth zirconates. Comput. Mater. Sci., 2009, 46(3): 716,
CrossRef Google scholar
[56]
Zhou HM, Yi DQ. Effect of rare earth doping on thermo-physical properties of lanthanum zirconate ceramic for thermal barrier coatings. J. Rare Earths, 2008, 26(6): 770,
CrossRef Google scholar
[57]
Wu J, Wei XZ, Padture NP, et al.. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J. Am. Ceram. Soc., 2002, 85(12): 3031,
CrossRef Google scholar
[58]
Xu Q, Pan W, Wang JD, et al.. Preparation and thermophysical properties of Dy2Zr2O7 ceramic for thermal barrier coatings. Mater. Lett., 2005, 59(22): 2804,
CrossRef Google scholar
[59]
Xu Q, Pan W, Wang JD, et al.. Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings. J. Am. Ceram. Soc., 2006, 89(1): 340,
CrossRef Google scholar
[60]
Feng J, Xiao B, Zhou R, Pan W. Thermal conductivity of rare earth zirconate pyrochlore from first principles. Scr. Mater., 2013, 68(9): 727,
CrossRef Google scholar
[61]
Yang J, Shahid M, Zhao M, Feng J, Wan CL, Pan W. Physical properties of La2B2O7 (B = Zr, Sn, Hf and Ge) pyrochlore: First-principles calculations. J. Alloys Compd., 2016, 663: 834,
CrossRef Google scholar
[62]
G.Q. Lan, B. Ouyang, Y.S. Xu, J. Song, and Y. Jiang, Predictions of thermal expansion coefficients of rare-earth zirconate pyrochlores: A quasi-harmonic approximation based on stable phonon modes, J. Appl. Phys., 119(2016), No. 23, art. No. 235103.
[63]
X.Q. Wang, X. Bai, W. Xiao, et al., Calculation of thermal expansion coefficient of rare earth zirconate system at high temperature by first principles, Materials, 15(2022), No. 6, art. No. 2264.
[64]
Q. Chen, W. Song, Y. Xie, Z.X. Yan, J. Xu, and F. Gao, Thermal expansion coefficient of nonstoichiometric gadolinium zirconate: First-principles calculations and experimental study, J. Phys. Chem. Solids, 178(2023), art. No. 111363.
[65]
Joulia A, Vardelle M, Rossignol S. Synthesis and thermal stability of Re2Zr2O7, (Re = La, Gd) and La2(Zr1−xCex)2O7−δ compounds under reducing and oxidant atmospheres for thermal barrier coatings. J. Eur. Ceram. Soc., 2013, 33(13–14): 2633,
CrossRef Google scholar
[66]
Kaliyaperumal C, Sankarakumar A, Palanisamy J, Paramasivam T. Fluorite to pyrochlore phase transformation in nanocrystalline Nd2Zr2O7. Mater. Lett., 2018, 228: 493,
CrossRef Google scholar
[67]
Zhao HB, Levi CG, Wadley HNG. Vapor deposited samarium zirconate thermal barrier coatings. Surf. Coat. Technol., 2009, 203(20–21): 3157,
CrossRef Google scholar
[68]
Yu JH, Zhao HY, Tao SY, Zhou XM, Ding CX. Thermal conductivity of plasma sprayed Sm2Zr2O7 coatings. J. Eur. Ceram. Soc., 2010, 30(3): 799,
CrossRef Google scholar
[69]
Zhao HB, Begley MR, Heuer A, Sharghi-Moshtaghin R, Wadley HNG. Reaction, transformation and delamination of samarium zirconate thermal barrier coatings. Surf. Coat. Technol., 2011, 205(19): 4355,
CrossRef Google scholar
[70]
Aruna ST, Sanjeeviraja C, Balaji N, Manikandanath NT. Properties of plasma sprayed La2Zr2O7 coating fabricated from powder synthesized by a single-step solution combustion method. Surf. Coat. Technol., 2013, 219: 131,
CrossRef Google scholar
[71]
Jiang C, Jordan EH, Harris AB, Gell M, Roth J. Double-layer gadolinium zirconate/yttria-stabilized zirconia thermal barrier coatings deposited by the solution precursor plasma spray process. J. Therm. Spray Technol., 2015, 24(6): 895,
CrossRef Google scholar
[72]
Mahade S, Curry N, Björklund S, Markocsan N, Nylén P. Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray. Surf. Coat. Technol., 2015, 283: 329,
CrossRef Google scholar
[73]
Martena M, Botto D, Fino P, Sabbadini S, Gola MM, Badini C. Modelling of TBC system failure: Stress distribution as a function of TGO thickness and thermal expansion mismatch. Eng. Fail. Anal., 2006, 13(3): 409,
CrossRef Google scholar
[74]
Lehmann H, Pitzer D, Pracht G, Vassen R, Stöver D. Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system. J. Am. Ceram. Soc., 2003, 86(8): 1338,
CrossRef Google scholar
[75]
Liu ZG, Ouyang JH, Wang BH, Zhou Y, Li J. Preparation and thermophysical properties of NdxZr1−xO2−x/2 (x = 0.1, 0.2, 0.3, 0.4, 0.5) ceramics. J. Alloys Compd., 2008, 466(1–2): 39,
CrossRef Google scholar
[76]
Guo YQ, He WT, Guo HB. Thermo-physical and mechanical properties of Yb2O3 and Sc2O3 co-doped Gd2Zr2O7 ceramics. Ceram. Int., 2020, 46(11): 18888,
CrossRef Google scholar
[77]
Yang RW, Xu J, Wei MY, et al.. Rattler effect on the properties of multicomponent rare-earth-zirconate ceramics. Ceram. Int., 2022, 48(19): 28586,
CrossRef Google scholar
[78]
Li MY, Lin CC, Niu YR, Zhang JM, Zeng Y, Song XM. Order–disorder transition and thermal conductivities of the (NdSmEuGd)(1−x)/2Dy2xZr2O7 series. J. Materiomics, 2023, 9(1): 138,
CrossRef Google scholar
[79]
Zhao FA, Xiao HY, Liu ZJ, Li SA, Zu XT. A DFT study of mechanical properties, thermal conductivity and electronic structures of Th-doped Gd2Zr2O7. Acta Mater., 2016, 121: 299,
CrossRef Google scholar
[80]
G. Lan, P.F. Ou, C. Chen, and J. Song, A complete computational route to predict reduction of thermal conductivities of complex oxide ceramics by doping: A case study of La2Zr2O7, J. Alloys Compd., 826(2020), art. No. 154224.
[81]
Liu ZG, Ouyang JH, Zhou Y, Xia XL. Effect of Ti substitution for Zr on the thermal expansion property of fluorite-type Gd2Zr2O7. Mater. Des., 2009, 30(9): 3784,
CrossRef Google scholar
[82]
Wang CJ, Wang Y, Fan XZ, Huang WZ, Zou BL, Cao XQ. Preparation and thermophysical properties of La2(Zr0.7Ce0.3)2O7 ceramic via sol–gel process. Surf. Coat. Technol., 2012, 212: 88,
CrossRef Google scholar
[83]
Wang YF, Yang F, Xiao P. Role and determining factor of substitutional defects on thermal conductivity: A study of La2(Zr1−xBx)2O7 (B = Hf, Ce, 0 ≤ x ≤ 0.5) pyrochlore solid solutions. Acta Mater., 2014, 68: 106,
CrossRef Google scholar
[84]
Ma W, Li XY, Yin YC, et al.. The mechanical and thermophysical properties of La2(Zr1−xCex)2O7 ceramics. J. Alloys Compd., 2016, 660: 85,
CrossRef Google scholar
[85]
Liu L, Xu Q, Wang FC, Zhang HS. Thermophysical properties of complex rare-earth zirconate ceramic for thermal barrier coatings. J. Am. Ceram. Soc., 2008, 91(7): 2398,
CrossRef Google scholar
[86]
Liu L, Wang FC, Ma Z, Xu Q, Fang SG. Thermophysical properties of (MgxLa0.5−xSm0.5)2(Zr0.7Ce0.3)2O7−x (x = 0, 0.1, 0.2, 0.3) ceramic for thermal barrier coatings. J. Am. Ceram. Soc., 2011, 94(3): 675,
CrossRef Google scholar
[87]
Zhao M, Ren XR, Yang J, Pan W. Low thermal conductivity of rare-earth zirconate-stannate solid solutions (Yb2Zr2O7)1−x(Ln2Sn2O7)x (Ln = Nd, Sm). J. Am. Ceram. Soc., 2016, 99(1): 293,
CrossRef Google scholar
[88]
Xue ZL, Wu SQ, Qian LH, Byon E, Zhang SH. Influence of Y2O3 and Ta2O5 co-doping on microstructure and thermal conductivity of Gd2Zr2O7 ceramics. J. Mater. Eng. Perform., 2020, 29(2): 1206,
CrossRef Google scholar
[89]
Guo L, Guo HB, Peng H, Gong SK. Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ thermal barrier coatings. J. Eur. Ceram. Soc., 2014, 34(5): 1255,
CrossRef Google scholar
[90]
F.F. Zhou, L.P. Xu, C.M. Deng, et al., Nanomechanical characterization of nanostructured La2(Zr0.75Ce0.25)2O7 thermal barrier coatings by nanoindentation, Appl. Surf. Sci., 505(2020), art. No. 144585.
[91]
Wang DZ, Dong SJ, Zeng JY, et al.. Influence of doping Mg2+ or Ti4+ captions on the microstructures, thermal radiation and thermal cycling behavior of plasma-sprayed Gd2Zr2O7 coatings. Ceram. Int., 2020, 46(9): 13054,
CrossRef Google scholar
[92]
Z.Y. Shen, G.X. Liu, R.D. Mu, L.M. He, Z.H. Xu, and J.W. Dai, Effects of Er stabilization on thermal property and failure behavior of Gd2Zr2O7 thermal barrier coatings, Corros. Sci., 185(2021), art. No. 109418.
[93]
Jiang D, Wang YF, Wang S, Liu RJ, Han J. Thermal conductivity of air plasma sprayed yttrium heavily-doped lanthanum zirconate thermal barrier coatings. Ceram. Int., 2019, 45(3): 3199,
CrossRef Google scholar
[94]
Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A, 2004, 375–377: 213,
CrossRef Google scholar
[95]
Yeh JW, Chen SK, Lin SJ, et al.. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299,
CrossRef Google scholar
[96]
Wright AJ, Wang QY, Ko ST, Chung KM, Chen RK, Luo J. Size disorder as a descriptor for predicting reduced thermal conductivity in medium- and high-entropy pyrochlore oxides. Scripta Mater., 2020, 181: 76,
CrossRef Google scholar
[97]
Y.H. Wang, Y.J. Jin, T. Wei, et al., Size disorder: A descriptor for predicting the single- or dual-phase formation in multi-component rare earth zirconates, J. Alloys Compd., 918(2022), art. No. 165636.
[98]
Yang HB, Lin GQ, Bu HP, et al.. Single-phase forming ability of high-entropy ceramics from a size disorder perspective: A case study of (La0.2Eu0.2Gd0.2Y0.2Yb0.2)2Zr2O7. Ceram. Int., 2022, 48(5): 6956,
CrossRef Google scholar
[99]
Li F, Zhou L, Liu JX, Liang YC, Zhang GJ. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. J. Adv. Ceram., 2019, 8(4): 576,
CrossRef Google scholar
[100]
Ren K, Wang QK, Shao G, Zhao XF, Wang YG. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating. Scripta Mater., 2020, 178: 382,
CrossRef Google scholar
[101]
Ren K, Wang QK, Cao YJ, Shao G, Wang YG. Multicomponent rare-earth cerate and zirconocerate ceramics for thermal barrier coating materials. J. Eur. Ceram. Soc., 2021, 41(2): 1720,
CrossRef Google scholar
[102]
He JJ, He G, Liu J, Tao JC. New class of high-entropy defect fluorite oxides RE2(Ce0.2Zr0.2Hf0.2Sn0.2Ti0.2)2O7 (RE = Y, Ho, Er, or Yb) as promising thermal barrier coatings. J. Eur. Ceram. Soc., 2021, 41(12): 6080,
CrossRef Google scholar
[103]
D. Song, T. Song, U. Paik, et al., Glass-like thermal conductivity in mass-disordered high-entropy (Y, Yb)2(Ti, Zr, Hf)2O7 for thermal barrier material, Mater. Des., 210(2021), art. No. 110059.
[104]
Zhang YH, Xie M, Wang ZG, et al.. Marked reduction in the thermal conductivity of (La0.2Gd0.2Y0.2Yb0.2Er0.2)2Zr2O7 high-entropy ceramics by substituting Zr4+ with Ti4+. Ceram. Int., 2022, 48(7): 9602,
CrossRef Google scholar
[105]
Luo XW, Luo LR, Zhao XF, et al.. Single-phase rare-earth high-entropy zirconates with superior thermal and mechanical properties. J. Eur. Ceram. Soc., 2022, 42(5): 2391,
CrossRef Google scholar
[106]
X.W. Luo, R.Q. Huang, C.H. Xu, S. Huang, S.E. Hou, and H.Y. Jin, Designing high-entropy rare-earth zirconates with tunable thermophysical properties for thermal barrier coatings, J. Alloys Compd., 926(2022), art. No. 166714.
[107]
Yan RX, Liang WP, Miao Q, et al.. Mechanical, thermal and CMAS resistance properties of high-entropy (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 ceramics. Ceram. Int., 2023, 49(12): 20729,
CrossRef Google scholar
[108]
Y.H. Zhang, M. Xie, Z.G. Wang, et al., Unveiling the underlying mechanism of unusual thermal conductivity behavior in multicomponent high-entropy (La0.2Gd0.2Y0.2Yb0.2Er0.2)2 (Zr1−xCex)2O7 ceramics, J. Alloys Compd., 958(2023), art. No. 170471.
[109]
Zhou L, Li F, Liu JX, et al.. High-entropy thermal barrier coating of rare-earth zirconate: A case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying. J. Eur. Ceram. Soc., 2020, 40(15): 5731,
CrossRef Google scholar
[110]
Zhu JT, Meng XY, Zhang P, et al.. Dual-phase rare-earth-zirconate high-entropy ceramics with glass-like thermal conductivity. J. Eur. Ceram. Soc., 2021, 41(4): 2861,
CrossRef Google scholar
[111]
Fan W, Bai Y, Liu YF, et al.. Principal element design of pyrochlore-fluorite dual-phase medium- and high-entropy ceramics. J. Mater. Sci. Technol., 2022, 107: 149,
CrossRef Google scholar
[112]
Liu HL, Pang S, Liu CQ, Wu YT, Zhang GJ. High-entropy yttrium pyrochlore ceramics with glass-like thermal conductivity for thermal barrier coating application. J. Am. Ceram. Soc., 2022, 105(10): 6437,
CrossRef Google scholar
[113]
Y.L. Wang, G.Q. Lin, L.X. Yang, et al., Preparation and thermophysical properties of a novel dual-phase and single-phase rare-earth-zirconate high-entropy ceramics, J. Alloys Compd., 938(2023), art. No. 168551.
[114]
Liu DB, Shi BL, Geng LY, Wang YG, Xu BS, Chen YF. High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings. J. Adv. Ceram., 2022, 11(6): 961,
CrossRef Google scholar
[115]
Zhao ZT, Guo RF, Mao HR, Shen P. Effect of components on the microstructures and properties of rare-earth zirconate ceramics prepared by ultrafast high-throughput sintering. J. Eur. Ceram. Soc., 2021, 41(11): 5768,
CrossRef Google scholar
[116]
K.B. Zhang, W.W. Li, J.J. Zeng, et al., Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy transparent ceramic using combustion synthesized nanopowder, J. Alloys Compd., 817(2020), art. No. 153328.
[117]
Deng SX, He G, Yang ZC, Wang JX, Li JT, Jiang L. Calcium–magnesium–alumina–silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2E0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings. J. Mater. Sci. Technol., 2022, 107: 259,
CrossRef Google scholar
[118]
Y.H. Zhang, M. Xie, Z.G. Wang, et al., Exploring the increasing behavior of thermal conductivity for high-entropy zirconates at high temperatures, Scripta Mater., 228(2023), art. No. 115328.
[119]
Y.R. Li, Q. Wu, M.L. Lai, et al., Influence of chemical disorder on mechanical and thermal properties of multi-component rare earth zirconate pyrochlores (nRE1/n)2Zr2O7, J. Appl. Phys., 132(2022), No. 7, art. No. 075108.
[120]
Fan Y, Wu Q, Yao Y, Wang JM, Zhao JL, Liu B. Temperature effect on mechanical and thermal properties of multicomponent rare-earth zirconate pyrochlores. J. Am. Ceram. Soc., 2023, 106(2): 1500,
CrossRef Google scholar
[121]
Li T, Ma Z, Liu L, Zhu SZ. Thermal properties of Sm2Zr2O7–NiCr2O4 composites. Ceram. Int., 2014, 40(7): 11423,
CrossRef Google scholar
[122]
Yang J, Wan CL, Zhao M, Shahid M, Pan W. Effective blocking of radiative thermal conductivity in La2Zr2O7/LaPO4 composites for high temperature thermal insulation applications. J. Eur. Ceram. Soc., 2016, 36(15): 3809,
CrossRef Google scholar
[123]
A. Qayyum, S. Azam, A.H. Reshak, et al., Spin-dependent first-principles study on optoelectronic properties of neodymium zirconates pyrochlores Nd2Zr2O7 in Fd-3m and pmma phases, Molecules, 27(2022), No. 17, art. No. 5711.
[124]
Wang L, Eldridge JI, Guo SM. Thermal radiation properties of plasma-sprayed Gd2Zr2O7 thermal barrier coatings. Scripta Mater., 2013, 69(9): 674,
CrossRef Google scholar
[125]
Wang DY, Liu L, Liu YB, Li T, Ma Z, Wu HX. Heat insulating capacity of Sm2Zr2O7 coating added with high absorptivity solids. Ceram. Int., 2017, 43(2): 2884,
CrossRef Google scholar
[126]
Wang YF, Xiao P. The phase stability and toughening effect of 3Y-TZP dispersed in the lanthanum zirconate ceramics. Mater. Sci. Eng. A, 2014, 604: 34,
CrossRef Google scholar
[127]
Zhong XH, Zhao HY, Liu CG, et al.. Improvement in thermal shock resistance of gadolinium zirconate coating by addition of nanostructured yttria partially-stabilized zirconia. Ceram. Int., 2015, 41(6): 7318,
CrossRef Google scholar
[128]
Schmitt MP, Stokes JL, Rai AK, Schwartz AJ, Wolfe DE. Durable aluminate toughened zirconate composite thermal barrier coating (TBC) materials for high temperature operation. J. Am. Ceram. Soc., 2019, 102(8): 4781,
CrossRef Google scholar
[129]
Luo XW, Huang S, Xu CH, Hou SE, Jin HY. Rare-earth high-entropy aluminate-toughened-zirconate dual-phase composite ceramics for advanced thermal barrier coatings. Ceram. Int., 2023, 49(1): 766,
CrossRef Google scholar
[130]
Yu YC, Godbole EP, Berrios J, Hewage N, Poerschke DL. Slow sintering in garnet-containing Y and Gd zirconate–aluminate mixtures for thermal barrier coatings. J. Am. Ceram. Soc., 2023, 106(8): 4519,
CrossRef Google scholar
[131]
Carpio P, Salvador MD, Borrell A, Sánchez E. Thermal behaviour of multilayer and functionally-graded YSZ/Gd2Zr2O7 coatings. Ceram. Int., 2017, 43(5): 4048,
CrossRef Google scholar
[132]
Rai AK, Schmitt MP, Dorfman MR, Zhu DM, Wolfe DE. Comparison of single-phase and two-phase composite thermal barrier coatings with equal total rare-earth content. J. Therm. Spray Technol., 2018, 27(4): 556,
CrossRef Google scholar
[133]
G. Jin, Y.C. Fang, X.F. Cui, et al., Effect of YSZ fibers and carbon nanotubes on bonding strength and thermal cycling lifetime of YSZ–La2Zr2O7 thermal barrier coatings, Surf. Coat. Technol., 397(2020), art. No. 125986.
[134]
Y. Liu, K.Y. Chen, A. Kumar, and P. Patnaik, Principles of machine learning and its application to thermal barrier coatings, Coatings, 13(2023), No. 7, art. No. 1140.
[135]
D.D. Ye, W.Z. Wang, Z. Xu, C.D. Yin, H.T. Zhou, and Y.J. Li, Prediction of thermal barrier coatings microstructural features based on support vector machine optimized by cuckoo search algorithm, Coatings, 10(2020), No. 7, art. No. 704.
[136]
H. Zhu, D.P. Li, M. Yang, and D.D. Ye, Prediction of microstructure and mechanical properties of atmospheric plasma-sprayed 8YSZ thermal barrier coatings using hybrid machine learning approaches, Coatings, 13(2023), No. 3, art. No. 602.

Accesses

Citations

Detail

Sections
Recommended

/